• 1
    Y. M. Chiang and K. Jakus, “Fundamental Research Needs in Ceramics: Report from the 1997 NSF Workshop.” Available at: (accessed on 12 October 2012).
  • 2
    K. Niihara, T. Ohji, and Y. Sakka, “3rd International Congress on Ceramics (ICC3),” IOP Conf. Ser., 18, 012001, 4 pp (2011).
  • 3
    I. M. Robertson, C. A. Schuh, J. S. Vetrano, N. D. Browning, D. P. Field, D. J. Jensen, M. K. Miller, I. Baker, D. C. Dunand, R. Dunin-Borkowski, B. Kabius, T. Kelly, S. Lozano-Perez, A. Misra, G. S. Rohrer, A. D. Rollett, M. L. Taheri, G. B. Thompson, M. Uchic, X. L. Wang, and G. Was, “Towards an Integrated Materials Characterization Toolbox,” J. Mater. Res., 26 [11] 134183 (2011).
  • 4
    L. W. Martin, Y. H. Chu, and R. Ramesh, “Advances in the Growth and Characterization of Magnetic, Ferroelectric, and Multiferroic Oxide Thin Films,” Mater. Sci. Eng., R, 68 [4–6] 111333 (2010).
  • 5
    J. E. Garay, “Current-Activated, Pressure-Assisted Densification of Materials”; pp. 44568 in Annual Review of Materials Research, Vol. 40, Edited by D. R. Clarke, M. Ruhle, and F. Zok. Publisher Annual Reviews, Palo Alto, CA, 2010.
  • 6
    J. A. Horn, S. C. Zhang, U. Selvaraj, G. L. Messing, and S. Trolier-McKinstry, “Templated Grain Growth of Textured Bismuth Titanate,” J. Am. Ceram. Soc., 82 [4] 9216 (1999).
  • 7
    M. M. Seabaugh, I. H. Kerscht, and G. L. Messing, “Texture Development by Templated Grain Growth in Liquid-Phase-Sintered Alpha-Alumina,” J. Am. Ceram. Soc., 80 [5] 11818 (1997).
  • 8
    S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, “Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films,” Science, 264 [5157] 4135 (1994).
  • 9
    A. Tsukazaki, A. Ohtomo, T. Kita, Y. Ohno, H. Ohno, and M. Kawasaki, “Quantum Hall Effect in Polar Oxide Heterostructures,” Science, 315 [5817] 138891 (2007).
  • 10
    S. J. Dillon, M. Tang, W. C. Carter, and M. P. Harmer, “Complexion: A New Concept for Kinetic Engineering in Materials Science,” Acta Mater., 55 [18] 620818 (2007).
  • 11
    S. Curtarolo, W. Setyawan, G. L. W. Hart, M. Jahnatek, R. V. Chepulskii, R. H. Taylor, S. D. Wanga, J. K. Xue, K. S. Yang, O. Levy, M. J. Mehl, H. T. Stokes, D. O. Demchenko, and D. Morgan, “AFLOW: An Automatic Framework for High-Throughput Materials Discovery,” Comput. Mater. Sci., 58, 21826 (2012).
  • 12
    S. Wang, Z. Wang, W. Setyawan, N. Mingo, and S. Curtarolo, “Assessing the Thermoelectric Properties of Sintered Compounds via High-Throughput Ab-Initio Calculations,” Phys. Rev. X, 1, 021012 (2011).
  • 13
    R. Krishnamurthy, Y. G. Yoon, D. J. Srolovitz, and R. Car, “Oxygen Diffusion in Yttria-Stabilized Zirconia: A New Simulation Model,” J. Am. Ceram. Soc., 87 [10] 182130 (2004).
  • 14
    V. Tikare, M. Braginsky, D. Bouvard, and A. Vagnon, “Numerical Simulation of Microstructural Evolution During Sintering at the Mesoscale in a 3D Powder Compact,” Comput. Mater. Sci., 48 [2] 31725 (2010).
  • 15
    S. A. Langer, E. Fuller, and W. C. Carter, “OOF: An Image-Based Finite-Element Analysis of Material Microstructures,” Comp. Sci. Eng., 3 [3] 1523 (2001).
  • 16
    T. M. Pollock, J. E. Allison, D. G. Backman, M. C. Boyce, M. Gersh, E. A. Holm, R. LeSar, M. Long, A. C. Powell, J. J. Schirra, D. Demania Whitis, and C. Woodward, Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security. National Academy of Sciences, Washington, DC, 2008.
  • 17
    Materials Genome Initiative for Global Competitiveness.” White House Office of Science Technology and Policy, 2011. Available at (accessed on 12 October 2012).
  • 18
    W. Weibull, “A Statistical Distribution Function of Wide Applicability,” J. Appl. Mech.-Trans. ASME, 18 [3] 2937 (1951).
  • 19
    H. Touchette, “A Basic Introduction to Large Deviations: Theory, Applications, Simulations”; pp. 151 in Modern Computational Science 11: Lecture Notes from the 3rd International Oldenburg Summer School, Edited by R. Leidl and A. K. Hartmann. Bis-verlag der Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany, 2011.
  • 20
    B. J. Harder, J. Almer, K. N. Lee, and K. T. Faber, “In Situ Stress Analysis of Multilayer Environmental Barrier Coatings,” Powder Diffr., 24 [2] 948 (2009).
  • 21
    G. N. Morscher, G. Ojard, R. Miller, Y. Gowayed, U. Santhosh, J. Ahmad, and R. John, “Tensile Creep and Fatigue of Sylramic-iBN Melt-Infiltrated SiC Matrix Composites: Retained Properties, Damage Development, and Failure Mechanisms,” Compos. Sci. Technol., 68 [15–16] 330513 (2008).
  • 22
    E. A. Marquis, N. A. Yahya, D. J. Larson, M. K. Miller, and R. I. Todd, “Probing the Improbable: Imaging C Atoms in Alumina,” Mater. Today, 13 [10] 346 (2010).
  • 23
    K. J. Batenburg, S. Bals, J. Sijbers, C. Kubel, P. A. Midgley, J. C. Hernandez, U. Kaiser, E. R. Encina, E. A. Coronado, and G. Van Tendeloo, “3D Imaging of Nanomaterials by Discrete Tomography,” Ultramicroscopy, 109 [6] 73040 (2009).
  • 24
    S. J. Dillon and G. S. Rohrer, “Characterization of the Grain-Boundary Character and Energy Distributions of Yttria Using Automated Serial Sectioning and EBSD in the FIB,” J. Am. Ceram. Soc., 92 [7] 15805 (2009).
  • 25
    A. Morales-Rodriguez, P. Reynaud, G. Fantozzi, J. Adrien, and E. Maire, “Porosity Analysis of Long-Fiber-Reinforced Ceramic Matrix Composites Using X-ray Tomography,” Scripta Mater., 60 [6] 38890 (2009).
  • 26
    M. Syha, W. Rheinheimer, M. Baurer, E. M. Lauridsen, W. Ludwig, D. Weygand, and P. Gumbsch, “Three-Dimensional Grain Structure of Sintered Bulk Strontium Titanate from X-Ray Diffraction Contrast Tomography,” Scripta Mater., 66 [1] 14 (2012).
  • 27
    G. A. Gonzons, J. W. McCauley, and I. G. Batyrev, “Multiscale Modeling of Armor Ceramics: Focus on AlON”; pp. 111 in ARL Tech Report, ARL-RP-337. Army Research Laboratory, Aberdeen, MD, 2011.
  • 28
    W. L. Ellsworth and G. C. Beroza, “Seismic Evidence for an Earthquake Nucleation Phase,” Science, 268 [5212] 8515 (1995).
  • 29
    L. Borcea, G. Papanicolaou, C. Tsogka, and J. Berryman, “Imaging and Time Reversal in Random Media,” Inverse Prob., 18 [5] 124779 (2002).
  • 30
    C. H. Wang, J. T. Rose, and F. K. Chang, “A Synthetic Time-Reversal Imaging Method for Structural Health Monitoring,” Smart Mater. Struct., 13 [2] 41523 (2004).
  • 31
    A. J. Allen, “Characterization of Ceramics by X-Ray and Neutron Small-Angle Scattering,” J. Am. Ceram. Soc., 88 [6] 136781 (2005).
  • 32
    M. D. Hager, P. Greil, C. Leyens, S. van der Zwaag, and U. S. Schubert, “Self-Healing Materials,” Adv. Mater., 22 [47] 542430 (2010).
  • 33
    J. Cho, C. M. Wang, H. M. Chan, J. M. Rickman, and M. P. Harmer, “Role of Segregating Dopants on the Improved Creep Resistance of Aluminum Oxide,” Acta Mater., 47 [15–16] 4197207 (1999).
  • 34
    J. H. Cho, M. P. Harmer, H. M. Chan, J. M. Rickman, and A. M. Thompson, “Effect of Yttrium and Lanthanum on the Tensile Creep Behavior of Aluminum Oxide,” J. Am. Ceram. Soc., 80 [4] 10137 (1997).
  • 35
    S. Lartigue-Korinek, C. Carry, F. Dupau, and L. Priester, “Transmission Electron Microscopy Analysis of Grain Boundary Behavior in Superplastic Doped Alumina,” Mater. Sci. Forum, 170–172, 40914 (1994).
  • 36
    K. Matsunaga, H. Nishimura, H. Muto, T. Yamamoto, and Y. Ikuhara, “Direct Measurements of Grain Boundary Sliding in Yttrium-Doped Alumina Bicrystals,” Appl. Phys. Lett., 82 [8] 117981 (2003).
  • 37
    H. Yoshida, Y. Ikuhara, and T. Sakuma, “Transient Creep in Fine-Grained Polycrystalline Al2O3 with Lu3+ Ion Segregation at the Grain Boundaries,” J. Mater. Res., 16 [3] 71620 (2001).
  • 38
    H. Yoshida, A. Kuwabara, T. Yamamoto, Y. Ikuhara, and T. Sakuma, “High Temperature Plastic Flow and Grain Boundary Chemistry in Oxide Ceramics,” J. Mater. Sci., 40 [12] 312935 (2005).
  • 39
    K. Bedu-Amissah, J. M. Rickman, H. M. Chan, and M. P. Harmer, “Grain-Boundary Diffusion of Cr in Pure and Y-Doped Alumina,” J. Am. Ceram. Soc., 90 [5] 15515 (2007).
  • 40
    H. K. Cheng, S. J. Dillon, H. S. Caram, J. M. Rickman, H. M. Chan, and M. P. Harmer, “The Effect of Yttrium on Oxygen Grain-Boundary Transport in Polycrystalline Alumina Measured Using Ni Marker Particles,” J. Am. Ceram. Soc., 91 [6] 20028 (2008).
  • 41
    T. Matsudaira, M. Wada, T. Saitoh, and S. Kitaoka, “The Effect of Lutetium Dopant on Oxygen Permeability of Alumina Polycrystals Under Oxygen Potential Gradients at Ultra-High Temperatures,” Acta Mater., 58 [5] 154453 (2010).
  • 42
    T. Matsudaira, M. Wada, T. Saitoh, and S. Kitaoka, “Oxygen Permeability in Cation-Doped Polycrystalline Alumina Under Oxygen Potential Gradients at High Temperatures,” Acta Mater., 59 [14] 544050 (2011).
  • 43
    J. A. Nychka and D. R. Clarke, “Quantification of Aluminum Outward Diffusion During Oxidation of FeCrAl Alloys,” Oxid. Met., 63 [5–6] 32552 (2005).
  • 44
    C. M. Wang, G. S. Cargill, M. P. Harmer, H. M. Chan, and J. Cho, “Atomic Structural Environment of Grain Boundary Segregated Y and Zr in Creep Resistant Alumina from EXAFS,” Acta Mater., 47 [12] 341122 (1999).
  • 45
    H. Yoshida, Y. Ikuhara, T. Sakuma, M. Sakurai, and E. Matsubara, “X-ray Absorption Fine-Structure Study on the Fine Structure of Lutetium Segregated at Grain Boundaries in Fine-Grained Polycrystalline Alumina,” Phil. Mag., 84 [9] 86576 (2004).
  • 46
    P. Kansuwan and J. M. Rickman, “Role of Segregating Impurities in Grain-Boundary Diffusion,” J. Chem. Phys., 126 [9] 094707 (2007).
  • 47
    H. Yoshida, Y. Ikuhara, and T. Sakuma, “Grain Boundary Electronic Structure Related to the High Temperature Creep Resistance in Polycrystalline Al2O3,” Acta Mater., 50 [11] 295566 (2002).
  • 48
    A. H. Heuer, “Oxygen and Aluminum Diffusion in Alpha-Al2O3: How Much Do We Really Understand?J. Eur. Ceram. Soc., 28 [7] 1495507 (2008).
  • 49
    J. W. Jeong, J. H. Han, and D. Y. Kim, “Effect of Electric Field on the Migration of Grain Boundaries in Alumina,” J. Am. Ceram. Soc., 83 [4] 9158 (2000).
  • 50
    H. R. Jin, S. H. Yoon, J. H. Lee, N. M. Hwang, D. Y. Kim, and J. H. Han, “Effect of External Electric Field on the Grain Growth of Barium Titanate in N2 Atmosphere,” J. Mater. Sci., 16 [11–12] 74952 (2005).
  • 51
    H. Conrad, “Space Charge and Grain Boundary Energy in Zirconia (3Y-TZP),” J. Am. Ceram. Soc., 94 [11] 36412 (2011).
  • 52
    H. Conrad and D. Yang, “Dependence of the Sintering Rate and Related Grain Size of Yttria-Stabilized Polycrystalline Zirconia (3Y-TZP) on the Strength of an Applied Dc electric Field,” Mat. Sci. Eng. A-Struct., 528 [29–30] 85239 (2011).
  • 53
    J. Langer, M. J. Hoffmann, and O. Guillon, “Electric Field-Assisted Sintering in Comparison with the Hot Pressing of Yttria-Stabilized Zirconia,” J. Am. Ceram. Soc., 94 [1] 1318 (2011).
  • 54
    Z. J. Wang, J. E. Alaniz, W. Y. Jang, J. E. Garay, and C. Dames, “Thermal Conductivity of Nanocrystalline Silicon: Importance of Grain Size and Frequency-Dependent Mean Free Paths,” Nano Lett., 11 [6] 220613 (2011).
  • 55
    O. L. Krivanek, G. J. Corbin, N. Dellby, B. F. Elston, R. J. Keyse, M. F. Murfitt, C. S. Own, Z. S. Szilagyi, and J. W. Woodruff, “An Electron Microscope for the Aberration-Corrected Era,” Ultramicroscopy, 108 [3] 17995 (2008).
  • 56
    M. Lentzen, B. Jahnen, C. L. Jia, A. Thust, K. Tillmann, and K. Urban, “High-Resolution Imaging with an Aberration-Corrected Transmission Electron Microscope,” Ultramicroscopy, 92 [3–4] 23342 (2002).
  • 57
    D. A. Muller, L. F. Kourkoutis, M. Murfitt, J. H. Song, H. Y. Hwang, J. Silcox, N. Dellby, and O. L. Krivanek, “Atomic-Scale Chemical Imaging of Composition and Bonding by Aberration-Corrected Microscopy,” Science, 319 [5866] 10736 (2008).
  • 58
    D. M. Saylor, A. Morawiec, and G. S. Rohrer, “Distribution and Energies of Grain Boundaries in Magnesia as a Function of Five Degrees of Freedom,” J. Am. Ceram. Soc., 85 [12] 30813 (2002).
  • 59
    D. M. Saylor, A. Morawiec, and G. S. Rohrer, “Distribution of Grain Boundaries in Magnesia as a Function of Five Macroscopic Parameters,” Acta Mater., 51 [13] 366374 (2003).
  • 60
    D. M. Saylor, A. Morawiec, and G. S. Rohrer, “The Relative Free Energies of Grain Boundaries in Magnesia as a Function of Five Macroscopic Parameters,” Acta Mater., 51 [13] 367586 (2003).
  • 61
    S. J. Dillon, H. Miller, M. P. Harmer, and G. S. Rohrer, “Grain Boundary Plane Distributions in Aluminas Evolving by Normal and Abnormal Grain Growth and Displaying Different Complexions,” Int. J. Mater. Res., 101 [1] 506 (2010).
  • 62
    S. J. Dillon and M. P. Harmer, “Multiple Grain Boundary Transitions in Ceramics: A Case Study of Alumina,” Acta Mater., 55 [15] 524754 (2007).
  • 63
    G. Harley, R. Yu, and L. C. De Jonghe, “Proton Transport Paths in Lanthanum Phosphate Electrolytes,” Solid State Ionics, 178 [11–12] 76973 (2007).
  • 64
    M. F. Ashby, Materials Selection in Mechanical Design, 4th edition. Elsevier, Oxford, UK, 2010.
  • 65
    J. A. Elliott, “Novel Approaches to Multiscale Modelling in Materials Science,” Int. Mater. Rev., 56 [4] 20725 (2011).
  • 66
    J. R. Wilson, W. Kobsiriphat, R. Mendoza, H. Y. Chen, J. M. Hiller, D. J. Miller, K. Thornton, P. W. Voorhees, S. B. Adler, and S. A. Barnett, “Three-Dimensional Reconstruction of a Solid-Oxide Fuel-Cell Anode,” Nat. Mater., 5 [7] 5414 (2006).
  • 67
    J. J. Williams, Z. Flom, A. A. Amell, N. Chawla, X. Xiao, and F. De Carlo, “Damage Evolution in SiC Particle Reinforced Al Alloy Matrix Composites by X-Ray Synchrotron Tomography,” Acta Mater., 58 [18] 6194205 (2010).
  • 68
    M. D. Novak and F. W. Zok, “High-Temperature Materials Testing with Full-Field Strain Measurement: Experimental Design and Practice,” Rev. Sci. Instrum., 82 [11] 115101 (2011).
  • 69
    R. K. Bordia and G. W. Scherer, “On Constrained Sintering. 1. Constitutive Model for a Sintering Body,” Acta Metall., 36 [9] 23937 (1988).
  • 70
    R. K. Bordia, R. Z. Zuo, O. Guillon, S. M. Salamone, and J. Rodel, “Anisotropic Constitutive Laws for Sintering Bodies,” Acta Mater., 54 [1] 1118 (2006).
  • 71
    E. A. Olevsky, “Theory of Sintering: From Discrete to Continuum,” Mater. Sci. Eng., R, 23 [2] 41100 (1998).
  • 72
    E. A. Olevsky, V. Tikare, and T. Garino, “Multi-Scale Study of Sintering: A Review,” J. Am. Ceram. Soc., 89 [6] 191422 (2006).
  • 73
    H. Itahara, W. S. Seo, S. Lee, H. Nozaki, T. Tani, and K. Koumoto, “The Formation Mechanism of a Textured Ceramic of Thermoelectric [Ca2CoO3]0.62 CoO2 on beta-Co(OH)2 Templates Through In Situ Topotactic Conversion,” J. Am. Chem. Soc., 127 [17] 636773 (2005).
  • 74
    T. Tani, “Crystalline-Oriented Piezoelectric Bulk Ceramics with a Perovskite-Type Structure,” J. Korean Phys. Soc., 32, S121720 (1998).
  • 75
    G. Evans, G. V. Duong, M. J. Ingleson, Z. L. Xu, J. T. A. Jones, Y. Z. Khimyak, J. B. Claridge, and M. J. Rosseinsky, “Chemical Bonding Assembly of Multifunctional Oxide Nanocomposites,” Adv. Funct. Mater., 20 [2] 2318 (2010).
  • 76
    R. Mezzenga and J. Ruokolainen, “Nanocomposites Nanoparticles in the Right Place,” Nat. Mater., 8 [12] 9268 (2009).
  • 77
    Y. Zhao, K. Thorkelsson, A. J. Mastroianni, T. Schilling, J. M. Luther, B. J. Rancatore, K. Matsunaga, H. Jinnai, Y. Wu, D. Poulsen, J. M. J. Frechet, A. P. Alivisatos, and T. Xu, “Small-Molecule-Directed Nanoparticle Assembly Towards Stimuli-Responsive Nanocomposites,” Nat. Mater., 8 [12] 97985 (2009).
  • 78
    A. Ohtomo and H. Y. Hwang, “A High-Mobility Electron Gas at the LaAlO3/SrTiO3 Heterointerface,” Nature, 427 [6973] 4236 (2004).
  • 79
    K. Szot, M. Rogala, W. Speier, Z. Klusek, A. Besmehn, and R. Waser, “TiO2 – A Prototypical Memristive Material,” Nanotechnology, 22 [25] 254001 (2011).
  • 80
    R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges,” Adv. Mater., 21 [25–26] 263263 (2009).
  • 81
    G. L. Cheng, P. F. Siles, F. Bi, C. Cen, D. F. Bogorin, C. W. Bark, C. M. Folkman, J. W. Park, C. B. Eom, G. Medeiros-Ribeiro, and J. Levy, “Sketched Oxide Single-Electron Transistor,” Nat. Nanotechnol., 6 [6] 3437 (2011).
  • 82
    J. Mannhart and D. G. Schlom, “Oxide Interfaces – An Opportunity for Electronics,” Science, 327 [5973] 160711 (2010).
  • 83
    C. H. Ahn, J. M. Triscone, and J. Mannhart, “Electric Field Effect in Correlated Oxide Systems,” Nature, 424 [6952] 10158 (2003).
  • 84
    J. Levy, “Oxide – Semiconductor Materials for Quantum Computation,” Phys. Status Solidi B, 233 [3] 46771 (2002).
  • 85
    J. W. Fergus, “Electrolytes for Solid Oxide Fuel Cells,” J. Power Sources, 162 [1] 3040 (2006).
  • 86
    G. J. Snyder and E. S. Toberer, “Complex Thermoelectric Materials,” Nat. Mater., 7 [2] 10514 (2008).
  • 87
    E. D. Wachsman, C. A. Marlowe, and K. T. Lee, “Role of Solid Oxide Fuel Cells in a Balanced Energy Strategy,” Energy Environ. Sci., 5 [2] 5498509 (2012).
  • 88
    S. B. Adler, “Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes,” Chem. Rev., 104 [10] 4791843 (2004).
  • 89
    A. Navrotsky, C. C. Ma, K. Lilova, and N. Birkner, “Nanophase Transition Metal Oxides Show Large Thermodynamically Driven Shifts in Oxidation-Reduction Equilibria,” Science, 330 [6001] 199201 (2010).
  • 90
    L. Li, G. S. Rohrer, and P. A. Salvador, “Heterostructured Ceramic Powders for Photocatalytic Hydrogen Production: Nanostructured TiO2 Shells Surrounding Microcrystalline (Ba,Sr)TiO3 Cores,” J. Am. Ceram. Soc., 95 [4] 141420 (2012).
  • 91
    Y. L. Zhang, A. M. Schultz, P. A. Salvador, and G. S. Rohrer, “Spatially Selective Visible Light Photocatalytic Activity of TiO2/BiFeO3 Heterostructures,” J. Mater. Chem., 21 [12] 416874 (2011).
  • 92
    J. Maier, “Nanoionics: Ion Transport and Electrochemical Storage in Confined Systems,” Nat. Mater., 4 [11] 80515 (2005).
  • 93
    N. Sata, K. Eberman, K. Eberl, and J. Maier, “Mesoscopic Fast Ion Conduction in Nanometre-Scale Planar Heterostructures,” Nature, 408 [6815] 9469 (2000).
  • 94
    J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, S. J. Pennycook, and J. Santamaria, “Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO2:Y2O3/SrTiO3 Heterostructures,” Science, 321 [5889] 67680 (2008).
  • 95
    H. T. Yi, T. Choi, S. G. Choi, Y. S. Oh, and S. W. Cheong, “Mechanism of the Switchable Photovoltaic Effect in Ferroelectric BiFeO3,” Adv. Mater., 23 [30] 34037 (2011).
  • 96
    W. Jiang, M. Noman, Y. M. Lu, J. A. Bain, P. A. Salvador, and M. Skowronski, “Mobility of Oxygen Vacancy in SrTiO3 and its Implications for Oxygen-Migration-Based Resistance Switching,” J. Appl. Phys., 110 [3] 034509 (2011).
  • 97
    A. K. Tagantsev, E. Courtens, and L. Arzel, “Prediction of a Low-Temperature Ferroelectric Instability in Antiphase Domain Boundaries of Strontium Titanate,” Phys. Rev. B, 64 [22] 224107 (2001).
  • 98
    B. W. Sheldon and V. B. Shenoy, “Space Charge Induced Surface Stresses: Implications in Ceria and Other ionic Solids,” Phys. Rev. Lett., 106 [21] 216104 (2011).
  • 99
    F. A. Kroger and H. J. Vink, “Relations Between the Concentrations of Imperfections in Crystalline Solids,” Solid State Phys. Adv. Res. Appl., 3, 307435 (1956).
  • 100
    F. A. Kroger and H. J. Vink, “Relations Between the Concentrations of Imperfections in Solids,” J. Phys. Chem. Solids, 5 [3] 20823 (1958).
  • 101
    G. C. C. Costa, S. V. Ushakov, R. H. R. Castro, A. Navrotsky, and R. Muccillo, “Calorimetric Measurement of Surface and Interface Enthalpies of Yttria-Stabilized Zirconia (YSZ),” Chem. Mater., 22 [9] 293745 (2010).
  • 102
    A. Navrotsky, “Nanoscale Effects on Thermodynamics and Phase Equilibria in Oxide Systems,” ChemPhysChem, 12 [12] 220715 (2011).
  • 103
    A. Navrotsky, L. Mazeina, and J. Majzlan, “Size-Driven Structural and Thermodynamic Complexity in Iron Oxides,” Science, 319 [5870] 16358 (2008).
  • 104
    G. S. Rohrer, “Grain Boundary Energy Anisotropy: A Review,” J. Mater. Sci., 46 [18] 588195 (2011).
  • 105
    R. Ma and T. Sasaki, “Nanosheets of Oxides and Hydroxides: Ultimate 2D Charge-Bearing Functional Crystallites,” Adv. Mater., 22 [45] 5082104 (2010).
  • 106
    J. Reed and G. Ceder, “Role of Electronic Structure in the Susceptibility of Metastable Transition-Metal Oxide Structures to Transformation,” Chem. Rev., 104 [10] 451333 (2004).
  • 107
    R. M. Morcos, G. Mera, A. Navrotsky, T. Varga, R. Riedel, F. Poli, and K. Muller, “Enthalpy of Formation of Carbon-Rich Polymer-Derived Amorphous SiCN Ceramics,” J. Am. Ceram. Soc., 91 [10] 334954 (2008).
  • 108
    T. Varga, A. Navrotsky, J. L. Moats, R. M. Morcos, F. Poli, K. Muller, A. Sahay, and R. Raj, “Thermodynamically Stable Sixoycz Polymer-Like Amorphous Ceramics,” J. Am. Ceram. Soc., 90 [10] 32139 (2007).
  • 109
    N. Chakraborti, “Genetic Algorithms in Materials Design and Processing,” Int. Mater. Rev., 49 [3–4] 24660 (2004).
  • 110
    P. V. Balachandran, S. R. Broderick, and K. Rajan, “Identifying the ‘Inorganic Gene’ for High-Temperature Piezoelectric Perovskites Through Statistical Learning,” Proc. R. Soc. A Math. Phys. Eng. Sci., 467 [2132] 227190 (2011).
  • 111
    R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, and H. Lam, “Combinatorial and High-Throughput Screening of Materials Libraries: Review of State of the Art,” ACS Comb. Sci., 13 [6] 579633 (2011).
  • 112
    J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials,” Science, 331 [6017] 56871 (2011).
  • 113
    D. Pacile, J. C. Meyer, C. O. Girit, and A. Zettl, “The Two-Dimensional Phase of Boron Nitride: Few-Atomic-Layer Sheets and Suspended Membranes,” Appl. Phys. Lett., 92 [13] 133107 (2008).
  • 114
    M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, “Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2,” Adv. Mater., 23 [37] 424853 (2011).
  • 115
    M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M. W. Barsoum, “Two-Dimensional Transition Metal Carbides,” ACS Nano, 6 [2] 132231 (2012).
  • 116
    N. Orlovskaya, Z. L. Xie, M. Klimov, H. Heinrich, D. Restrepo, R. Blair, and C. Suryanarayana, “Mechanochemical Synthesis of ReB2 Powder,” J. Mater. Res., 26 [21] 27729 (2011).
  • 117
    Z. Xie, N. Orlovskaya, D. A. Cullen, D. T. Restrepo, and R. G. Blair, Mechanochemical Synthesis of Hexagonal OsB2, Manuscript in preparation (2012).
  • 118
    H. Eckert, “Structural Characterization of Noncrystalline Solids and Glasses Using Solid-State NMR,” Prog. Nucl. Magn. Reson. Spectrosc., 24, 159293 (1992).
  • 119
    J. F. Stebbins, “ NMR Studies of Oxide Glass Structure”; pp. 391436 in Solid State NMR: Theory and Applications, Edited by M. Duer. Blackwell Scientific, Oxford, 2002
  • 120
    P. Richet, M. A. Bouhifd, P. Courtial, and C. Tequi, “Configurational Heat Capacity and Entropy of Borosilicate Melts,” J. Non-Cryst. Solids, 211 [3] 27180 (1997).
  • 121
    J. C. Mauro, Y. Z. Yue, A. J. Ellison, P. K. Gupta, and D. C. Allan, “Viscosity of Glass-Forming Liquids,” Proc. Natl Acad. Sci. USA, 106 [47] 197804 (2009).
  • 122
    A. Pradel and M. Ribes, “Ionic Conductive Glasses,” Mater. Sci. Eng. B Solid State Mater. Adv. Technol., 3 [1–2] 4556 (1989).
  • 123
    Q. Mei, B. Meyer, D. Martin, and S. W. Martin, “Ion Trapping Model and the Non-Arrhenius Ionic Conductivity in Fast Ion Conducting Glasses,” Solid State Ionics, 168 [1–2] 7585 (2004).
  • 124
    M. Bedjidian, K. Belkadhi, V. Boudry, C. Combaret, D. Decotigny, E. C. Gil, C. Taille, R. de la Dellanegra, V. A. Gapienko, G. Grenier, C. Jauffret, R. Kieffer, M. C. Fouz, R. Han, I. Laktineh, N. Lumb, K. Manai, S. Mannai, H. Mathez, L. Mirabito, J. P. Pelayo, M. Ruan, F. Schirra, N. Seguin-Moreau, W. Tromeur, M. Tytgat, M. Vander Donckt, and N. Zaganidis, “Performance of Glass Resistive Plate Chambers for a High-Granularity Semi-Digital Calorimeter,” J. Instrum., 6, P02001 (2011).
  • 125
    M. I. Ryshchenko, L. A. Mikheenko, L. P. Shchukina, and A. A. Baturin, “Integrated Study of Phase Composition and Structure of Porous Glass Ceramics,” Glass Ceram., 60 [5–6] 16870 (2003).
  • 126
    C. R. Kurkjian, P. K. Gupta, R. K. Brow, and N. Lower, “The Intrinsic Strength and Fatigue of Oxide Glasses,” J. Non-Cryst. Solids, 316 [1] 11424 (2003).
  • 127
    L. Wondraczek, J. C. Mauro, J. Eckert, U. Kuhn, J. Horbach, J. Deubener, and T. Rouxel, “Towards Ultrastrong Glasses,” Adv. Mater., 23 [39] 457886 (2011).
  • 128
    F. E. Wagner, S. Haslbeck, L. Stievano, S. Calogero, Q. A. Pankhurst, and P. Martinek, “Before Striking Gold in Gold-Ruby Glass,” Nature, 407 [6805] 6912 (2000).
  • 129
    A. N. MacDonald, A. Hryciw, Q. Li, and A. Meldrum, “Luminescence of Nd-Enriched Silicon Nanoparticle Glasses,” Opt. Mater., 28 [6–7] 8204 (2006).
  • 130
    Z. L. Samson, S. C. Yen, K. F. MacDonald, K. Knight, S. F. Li, D. W. Hewak, D. P. Tsai, and N. I. Zheludev, “Chalcogenide Glasses in Active Plasmonics,” Phys. Status Sol. RRL, 4 [10] 2746 (2010).
  • 131
    K. Hiromatsu, D. J. Hwang, and C. P. Grigoropoulos, “Active Glass Nanoparticles by Ultrafast Laser Pulses,” Micro Nano Lett., 3 [4] 1214 (2008).
  • 132
    F. Angeli, O. Villain, S. Schuller, T. Charpentier, D. de Ligny, L. Bressel, and L. Wondraczek, “Effect of Temperature and Thermal History on Borosilicate Glass Structure,” Phys. Rev. B, 85 [5] 054110 (2012).
  • 133
    J. S. Wu and J. F. Stebbins, “Quench Rate and Temperature Effects on Boron Coordination in Aluminoborosilicate Melts,” J. Non-Cryst. Solids, 356 [41–42] 2097108 (2010).
  • 134
    J. F. Stebbins, E. V. Dubinsky, K. Kanehashi, and K. E. Kelsey, “Temperature Effects on Non-Bridging Oxygen and Aluminum Coordination Number in Calcium Aluminosilicate Glasses and Melts,” Geochim. Cosmochim. Acta, 72 [3] 91025 (2008).
  • 135
    K. Kanehashi and J. F. Stebbins, “In Situ High Temperature 27Al NMR Study of Structure and Dynamics in a Calcium Aluminosilicate Glass and Melt,” J. Non-Cryst. Solids, 353 [44–46] 400110 (2007).
  • 136
    F. Angeli, O. Villain, S. Schuller, S. Ispas, and T. Charpentier, “Insight into Sodium Silicate Glass Structural Organization by Multinuclear NMR Combined with First-Principles Calculations,” Geochim. Cosmochim. Acta, 75 [9] 245369 (2011).
  • 137
    L. S. Du and J. F. Stebbins, “Network Connectivity in Aluminoborosilicate Glasses: A High-Resolution 11B, 27Al and 17O NMR Study,” J. Non-Cryst. Solids, 351[43–45] 350820 (2005).
  • 138
    M. Bertmer, L. Zuchner, J. C. C. Chan, and H. Eckert, “Short and Medium Range Order in Sodium Aluminoborate Glasses. 2. Site Connectivities and Cation Distributions Studied by Rotational Echo Double Resonance NMR Spectroscopy,” J. Phys. Chem. B, 104 [28] 654153 (2000).
  • 139
    J. D. Epping, W. Strojek, and H. Eckert, “Cation Environments and Spatial Distribution in Na2O-B2O3 glasses: New Results from Solid State NMR,” Phys. Chem. Chem. Phys., 7 [11] 23849 (2005).
  • 140
    L. Zhang and H. Eckert, “Short- and Medium-Range Order in Sodium Aluminophosphate Glasses: New Insights from High-Resolution Dipolar Solid-State NMR Spectroscopy,” J. Phys. Chem. B, 110 [18] 894658 (2006).
  • 141
    J. S. Wu, J. Deubener, J. F. Stebbins, L. Grygarova, H. Behrens, L. Wondraczek, and Y. Z. Yue, “Structural Response of a Highly Viscous Aluminoborosilicate Melt to Isotropic and Anisotropic Compressions,” J. Chem. Phys., 131 [10] 104504 (2009).
  • 142
    P. M. Voyles, J. M. Gibson, and M. M. J. Treacy, “Fluctuation Microscopy: A Probe of Atomic Correlations in Disordered Materials,” J. Electron Microsc., 49 [2] 25966 (2000).
  • 143
    F. Celarie, M. Ciccotti, and C. Marliere, “Stress-Enhanced Ion Diffusion at the Vicinity of a Crack Tip as Evidenced by Atomic Force Microscopy in Silicate Glasses,” J. Non-Cryst. Solids, 353 [1] 5168 (2007).
  • 144
    G. Pezzotti and A. Leto, “Contribution of Spatially and Spectrally Resolved Cathodoluminescence to Study Crack-Tip Phenomena in Silica Glass,” Phys. Rev. Lett., 103 [17] 175501 (2009).
  • 145
    E. A. Leed and C. G. Pantano, “Computer Modeling of Water Adsorption on Silica and Silicate Glass Fracture Surfaces,” J. Non-Cryst. Solids, 325 [1–3] 4860 (2003).
  • 146
    A. Meyer, J. Horbach, W. Kob, F. Kargl, and H. Schober, “Channel Formation and Intermediate Range Order in Sodium Silicate Melts and Glasses,” Phys. Rev. Lett., 93 [2] 027801 (2004).
  • 147
    J. C. Du and A. N. Cormack, “Molecular Dynamics Simulation of the Structure and Hydroxylation of Silica Glass Surfaces,” J. Am. Ceram. Soc., 88 [9] 25329 (2005).
  • 148
    E. R. Cruz-Chu, A. Aksimentiev, and K. Schulten, “Water-Silica Force field for Simulating Nanodevices,” J. Phys. Chem. B, 110 [43] 21497508 (2006).
  • 149
    A. A. Hassanali and S. J. Singer, “Model for the Water-Amorphous Silica Interface: The Undissociated Surface,” J. Phys. Chem. B, 111 [38] 1118193 (2007).
  • 150
    T. S. Mahadevan and S. H. Garofalini, “Dissociative Chemisorption of Water onto Silica Surfaces and Formation of Hydronium Ions,” J. Phys. Chem. C, 112 [5] 150715 (2008).
  • 151
    J. C. Fogarty, H. M. Aktulga, A. Y. Grama, A. C. T. van Duin, and S. A. Pandit, “A Reactive Molecular Dynamics Simulation of the Silica-Water Interface,” J. Chem. Phys., 132 [17] 174704 (2010).
  • 152
    L. Helmick, S. J. Dillon, K. Gerdes, R. Gemmen, G. S. Rohrer, S. Seetharaman, and P. A. Salvador, “Crystallographic Characteristics of Grain Boundaries in Dense Yttria-Stabilized Zirconia,” Int. J. Appl. Ceram. Technol., 8 [5] 121828 (2011).
  • 153
    G. S. Rohrer, “Measuring and Interpreting the Structure of Grain-Boundary Networks,” J. Am. Ceram. Soc., 94 [3] 63346 (2011).
  • 154
    S. J. Dillon, M. P. Harmer, and G. S. Rohrer, “The Relative Energies of Normally and Abnormally Growing Grain Boundaries in Alumina Displaying Different Complexions,” J. Am. Ceram. Soc., 93 [6] 1796802 (2010).
  • 155
    B. A. Proctor, I. Whitney, and J. W. Johnson, “Strength of Fused Silica,” Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 297 [1451] 53457 (1967).