SEARCH

SEARCH BY CITATION

Using the conventional high temperature solid-state reaction method Ba2Ca(PO4)2:Eu2+ phosphors were prepared. The phase structure, photoluminescence (PL) properties, and the PL thermal stability of the samples were investigated, respectively. Under the excitation at 365 nm, the phosphor exhibited an asymmetric broad-band blue emission with peak at 454 nm, which is ascribed to the 4f–5d transition of Eu2+. It was further proved that the dipole–dipole interactions results in the concentration quenching of Eu2+ in Ba2Ca1−x (PO4)2:xEu2+ phosphors. When the temperature turned up to 150°C, the emission intensity of Ba2Ca0.99(PO4)2:0.01Eu2+ phosphor was 59.07% of the initial value at room temperature. The activation energy ΔE was calculated to be 0.30 eV, which proved the good thermal stability of the sample. All the properties indicated that the blue-emitting Ba2Ca(PO4)2:Eu2+ phosphor has potential application in white LEDs.