SEARCH

SEARCH BY CITATION

References

  • 1
    B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics. Academic Press, New York, 1971.
  • 2
    K. Uchino, Piezoelectric Actuators and Ultrasonic Motors. Kluwer Academic Publishers, Boston, 1997.
  • 3
    EU-Directive 2002/96/EC, “Waste Electrical and Electronic Equipment (WEEE),” Off. J. Eur. Union, 46 [L37] 2438 (2003).
  • 4
    EU-Directive 2002/95/EC, “Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS),” Off. J. Eur. Union, 46 [L37] 1923 (2003).
  • 5
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, “Lead-Free Piezoceramics,” Nature, 432 [4] 847 (2004).
  • 6
    L. Egerton and D. M. Dillon, “Piezoelectric and Dielectric Properties of Ceramics in the System Potassium Sodium Niobate,” J. Am. Ceram. Soc., 42 [9] 43842 (1959).
  • 7
    K. Kobayashi, Y. Doshida, Y. Mizuno, and C. A. Randall, “A Route Forwards to Narrow the Performance Gap Between PZT and Lead-Free Piezoelectric Ceramic With Low Oxygen Partial Pressure Processed (Na0.5K0.5)NbO3,” J. Am. Ceram. Soc., 95 [9] 292833 (2012).
  • 8
    S. Kawada, M. Kimura, Y. Higuchi, and H. Takagi, “(K,Na)NbO3-Based Multilayer Piezoelectric Ceramics with Nickel Inner Electrodes,” Appl. Phys. Exp., 2 [11] 111401, 3pp (2009).
  • 9
    T. Takenaka and H. Nagata, “Current Status and Prospects of Lead-Free Piezoelectric Ceramics,” J. Eur. Ceram. Soc., 25 [12] 2693700 (2005).
  • 10
    T. R. Shrout and S. J. Zhang, “Lead-Free Piezoelectric Ceramics: Alternatives for PZT?J. Electroceram., 19 [1] 11124 (2007).
  • 11
    J. Rödel, W. Jo, K. T. P. Seifert, E. M. Anton, T. Granzow, and D. Damjanovic, “Perspective on the Development of Lead-Free Piezoceramics,” J. Am. Ceram. Soc., 92 [6] 115377 (2009).
  • 12
    W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Rödel, “Giant Electric-Field-Induced Strains in Lead-Free Ceramics for Actuator Applications - Status and Perspective,” J. Electroceram., 29 [1] 7193 (2012).
  • 13
    V. J. Tennery and K. W. Hang, “Thermal and X-Ray Diffraction Studies of NaNbO3–KNbO3 System,” J. Appl. Phys., 39 [10] 474953 (1968).
  • 14
    M. Ahtee and A. W. Hewat, “Structural Phase-Transitions in Sodium-Potassium Niobate Solid-Solutions by Neutron Powder Diffraction,” Acta Crystallogr. A, 34 [Mar] 30917 (1978).
  • 15
    G. Shirane, H. Danner, A. Pavlovic, and R. Pepinsky, “Phase Transitions in Ferroelectric KNbO3,” Phys. Rev., 93 [4] 6723 (1954).
  • 16
    V. J. Tennery, “High-Temperature Phase Transitions in NaNbO3,” J. Am. Ceram. Soc., 48 [10] 5379 (1965).
  • 17
    B. P. Zhang, J.-F. Li, K. Wang, and H. L. Zhang, “Compositional Dependence of Piezoelectric Properties in NaxK1−xNbO3 Lead-Free Ceramics Prepared by Spark Plasma Sintering,” J. Am. Ceram. Soc., 89 [5] 16059 (2006).
  • 18
    Y. J. Dai, X. W. Zhang, and K. P. Chen, “Morphotropic Phase Boundary and Electrical Properties of K1−xNaxNbO3 Lead-Free Ceramics,” Appl. Phys. Lett., 94 [4] 042905, 3pp (2009).
  • 19
    J.-J. Zhou, J.-F. Li, K. Wang, and X.-W. Zhang, “Phase Structure and Electrical Properties of (Li,Ta)-Doped (K, Na)NbO3 Lead-Free Piezoceramics in the Vicinity of Na/K = 50/50,” J. Mater. Sci., 46 [15] 51116 (2011).
  • 20
    J. Tellier, B. Malic, B. Dkhil, D. Jenko, J. Cilensek, and M. Kosec, “Crystal Structure and Phase Transitions of Sodium Potassium Niobate Perovskites,” Solid State Sci., 11 [2] 3204 (2009).
  • 21
    L. Wu, J. L. Zhang, C. L. Wang, and J. C. Li, “Influence of Compositional Ratio K/Na on Physical Properties in (KxNa1-x)NbO3 Ceramics,” J. Appl. Phys., 103 [8] 084116, 5pp (2008).
  • 22
    J. G. Wu, D. Q. Xiao, Y. Y. Wang, J. G. Zhu, L. Wu, and Y. H. Jiang, “Effects of K/Na Ratio on the Phase Structure and Electrical Properties of (KxNa0.96-xLi0.04)(Nb0.91Ta0.05Sb0.04)O3 Lead-Free Ceramics,” Appl. Phys. Lett., 91 [25] 252907, 3pp (2007).
  • 23
    J. G. Wu, D. Q. Xiao, Y. Y. Wang, J. G. Zhu, and P. Yu, “Effects of K Content on the Dielectric, Piezoelectric, and Ferroelectric Properties of 0.95(KxNa1-x)NbO3–0.05LiSbO3 Lead-Free Ceramics,” J. Appl. Phys., 103 [2] 024102, 4pp (2008).
  • 24
    Y. Kang, Y. Zhao, R. Huang, Y. Zhao, and H. Zhou, “Effect of Changing Na/K Ratio on Structure and Electrical Properties of (NaxKy)(Nb0.885Sb0.08)–0.035LiTaO3 Lead-Free Piezoelectric Ceramics,” J. Am. Ceram. Soc., 94 [6] 16836 (2011).
  • 25
    H. J. Trodahl, N. Klein, D. Damjanovic, N. Setter, B. Ludbrook, D. Rytz, and M. Kuball, “Raman Spectroscopy of (K, Na)NbO3 and (K, Na)1-xLixNbO3,” Appl. Phys. Lett., 93 [26] 262901, 3pp (2008).
  • 26
    H. E. Mgbemere, M. Hinterstein, and G. A. Schneider, “Electrical and Structural Characterization of (KxNa1-x)NbO3 Ceramics Modified With Li and Ta,” J. Appl. Crystallogr., 44, 10809 (2011).
  • 27
    K. Wang and J.-F. Li, “Analysis of Crystallographic Evolution in (Na, K)NbO3-Based Lead-Free Piezoceramics by X-ray Diffraction,” Appl. Phys. Lett., 91 [26] 262902, 3pp (2007).
  • 28
    N. Zhang, A. M. Glazer, D. Baker, and P. A. Thomas, “Structures of K0.05Na0.95NbO3 (50–300 K) and K0.30Na0.70NbO3 (100–200 K),” Acta Crystallogr. B, 65, 2919 (2009).
  • 29
    D. W. Baker, P. A. Thomas, N. Zhang, and A. M. Glazer, “A Comprehensive Study of the Phase Diagram of KxNa1-xNbO3,” Appl. Phys. Lett., 95 [9] 091903, 3pp (2009).
  • 30
    N. Klein, E. Hollenstein, D. Damjanovic, H. J. Trodahl, N. Setter, and M. Kuball, “A Study of the Phase Diagram of (K, Na, Li)NbO3 Determined by Dielectric and Piezoelectric Measurements, and Raman Spectroscopy,” J. Appl. Phys., 102 [1] 014112, 8pp (2007).
  • 31
    A. W. Hewat, “Cubic-Tetragonal-Orthorhombic-Rhombohedral Ferroelectric Transitions in Perovskite Potassium Niobate - Neutron Powder Profile Refinement of Structures,” J. Phys. C: Solid State Phys., 6 [16] 255972 (1973).
  • 32
    Y. P. Guo, K. Kakimoto, and H. Ohsato, “Phase Transitional Behavior and Piezoelectric Properties of (Na0.5K0.5)NbO3–LiNbO3 Ceramics,” Appl. Phys. Lett., 85 [18] 41213 (2004).
  • 33
    E. Hollenstein, M. Davis, D. Damjanovic, and N. Setter, “Piezoelectric Properties of Li- and Ta-Modified (K0.5Na0.5)NbO3 Ceramics,” Appl. Phys. Lett., 87 [18] 182905, 3pp (2005).
  • 34
    M. Matsubara, T. Yamaguchi, K. Kikuta, and S. Hirano, “Effect of Li Substitution on the Piezoelectric Properties of Potassium Sodium Niobate Ceramics,” Jpn. J. Appl. Phys., 44 [8] 613642 (2005).
  • 35
    H. L. Du, W. C. Zhou, F. Luo, D. M. Zhu, S. B. Qu, and Z. B. Pei, “An Approach to Further Improve Piezoelectric Properties of (K0.5Na0.5)NbO3-Based Lead-Free Ceramics,” Appl. Phys. Lett., 91 [20] 202907, 3pp (2007).
  • 36
    K. Higashide, K. I. Kakimoto, and H. Ohsato, “Temperature Dependence on the Piezoelectric Property of (1-x)(Na0.5K0.5)NbO3–XLiNbO3 Ceramics,” J. Eur. Ceram. Soc., 27 [13–15] 410710 (2007).
  • 37
    H. C. Song, K. H. Cho, H. Y. Park, C. W. Ahn, S. Nahm, K. Uchino, and S. H. Park, “Microstructure and Piezoelectric Properties of (1-x)(Na0.5K0.5)NbO3XLiNbO3 Ceramics,” J. Am. Ceram. Soc., 90 [6] 18126 (2007).
  • 38
    P. Zhao, B. P. Zhang, and J.-F. Li, “High Piezoelectric d33 Coefficient in Li-Modified Lead-Free (Na, K)NbO3 Ceramics Sintered at Optimal Temperature,” Appl. Phys. Lett., 90 [24] 242909, 3pp (2007).
  • 39
    K. Wang, J.-F. Li, and N. Liu, “Piezoelectric Properties of Low-Temperature Sintered Li-Modified (Na, K)NbO3 Lead-Free Ceramics,” Appl. Phys. Lett., 93 [9] 092904, 3pp (2008).
  • 40
    K. Wang and J.-F. Li, “Domain Engineering of Lead-Free Li-Modified (K, Na)NbO3 Polycrystals With Highly Enhanced Piezoelectricity,” Adv. Funct. Mater., 20 [12] 19249 (2010).
  • 41
    K. Wang and J.-F. Li, “Low-Temperature Sintering of Li-Modified (K, Na)NbO3 Lead-Free Ceramics: Sintering Behavior, Microstructure, and Electrical Properties,” J. Am. Ceram. Soc., 93 [4] 11017 (2010).
  • 42
    K. Wang, J.-F. Li, and J.-J. Zhou, “High Normalized Strain Obtained in Li-Modified (K, Na)NbO3 Lead-Free Piezoceramics,” Appl. Phys. Exp., 4 [6] 061501, 3pp (2011).
  • 43
    Y. J. Dai, X. W. Zhang, and G. Y. Zhou, “Phase Transitional Behavior in K0.5Na0.5NbO3–LiTaO3 Ceramics,” Appl. Phys. Lett., 90 [26] 262903, 3pp (2007).
  • 44
    S. J. Zhang, R. Xia, T. R. Shrout, G. Z. Zang, and J. F. Wang, “Piezoelectric Properties in Perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 Lead-Free Ceramics,” J. Appl. Phys., 100 [10] 104108, 6pp (2006).
  • 45
    Y. Shiratori, A. Magrez, and C. Pithan, “Particle Size Effect on the Crystal Structure Symmetry of K0.5Na0.5NbO3,” J. Eur. Ceram. Soc., 25 [12] 20759 (2005).
  • 46
    M. P. Lemeshko, E. S. Nazarenko, A. A. Gonchar, L. A. Reznichenko, T. I. Nedoseykina, A. A. Novakovich, O. Mathon, Y. Joly, and R. V. Vedrinskii, “EXAFS Studies of the Local Atomic Structure of the Lead-Free Piezoelectric Ceramics KxNa1-xNbO3 Over the Temperature Range 10–1023 K,” Phys. Rev. B, 76 [13] 134106, 11pp (2007).
  • 47
    A. Kodre, J. Tellier, I. Arcon, B. Malic, and M. Kosec, “Extended X-Ray Absorption Fine Structure Study of Phase Transitions in the Piezoelectric Perovskite K0.5Na0.5NbO3,” J. Appl. Phys., 105 [11] 113528, 4pp (2009).
  • 48
    D. M. Lin, K. W. Kwok, and H. L. W. Chan, “Phase Transition and Electrical Properties of (K0.5Na0.5)(Nb1-xTax)O3 Lead-Free Piezoelectric Ceramics,” Appl. Phys. A, 91 [1] 16771 (2008).
  • 49
    D. M. Lin, K. W. Kwok, H. Y. Tian, and H. W. L. W. Chan, “Phase Transitions and Electrical Properties of (Na1−xKx)(Nb1−ySby)O3 Lead-Free Piezoelectric Ceramics With a MnO2 Sintering Aid,” J. Am. Ceram. Soc., 90 [5] 145862 (2007).
  • 50
    Y. P. Guo, K. Kakimoto, and H. Ohsato, “(Na0.5K0.5)NbO3–LiTaO3 Lead-Free Piezoelectric Ceramics,” Mater. Lett., 59 [2–3] 2414 (2005).
  • 51
    D. M. Lin, K. W. Kwok, K. H. Lam, and H. L. W. Chan, “Structure and Electrical Properties of K0.5Na0.5NbO3–LiSbO3 Lead-Free Piezoelectric Ceramics,” J. Appl. Phys., 101 [7] 074111, 6pp (2007).
  • 52
    H. Y. Park, K. H. Cho, D. S. Paik, S. Nahm, H. G. Lee, and D. H. Kim, “Microstructure and Piezoelectric Properties of Lead-Free (1−x)(Na0.5K0.5)NbO3XCaTiO3 Ceramics,” J. Appl. Phys., 102 [12] 124101, 5pp (2007).
  • 53
    W. F. Liang, W. J. Wu, D. Q. Xiao, and J. G. Zhu, “Effect of the Addition of CaZrO3 and LiNbO3 on the Phase Transitions and Piezoelectric Properties of K0.5Na0.5NbO3 Lead-Free Ceramics,” J. Am. Ceram. Soc., 94 [12] 431722 (2011).
  • 54
    D. Lin, K. W. Kwok, and H. L. W. Chan, “Structure, Dielectric, and Piezoelectric Properties of CuO-Doped K0.5Na0.5NbO3–BaTiO3 Lead-Free Ceramics,” J. Appl. Phys., 102 [7] 074113, 6pp (2007).
  • 55
    D. Lin, K. W. Kwok, and H. W. L. Chan, “Dielectric and Piezoelectric Properties of (K0.5Na0.5)NbO3–Ba(Zr0.05Ti0.95)O3 Lead-Free Ceramics,” Appl. Phys. Lett., 91 [14] 143513, 3pp (2007).
  • 56
    H. L. Du, W. C. Zhou, F. Luo, D. M. Zhu, S. B. Qu, Y. Li, and Z. B. Pei, “Structure and Electrical Properties Investigation of (K0.5Na0.5)NbO3–(Bi0.5Na0.5)TiO3 Lead-Free Piezoelectric Ceramics,” J. Phys. D: Appl. Phys., 41 [8] 085416, 6pp (2008).
  • 57
    H. L. Du, W. C. Zhou, F. Luo, D. M. Zhu, S. B. Qu, Y. Li, and Z. B. Pei, “Design and Electrical Properties Investigation of (K0.5Na0.5)NbO3–BiMeO3 Lead-Free Piezoelectric Ceramics,” J. Appl. Phys., 104 [3] 034104, 7pp (2008).
  • 58
    C. Xu, D. Lin, and K. W. Kwok, “Electrical Properties of (K0.5Na0.5)(1−x)AgxNbO3 Lead-Free Piezoelectric Ceramics,” J. Mater. Sci. - Mater. Electron., 19 [11] 10547 (2008).
  • 59
    D. Lin, K. W. Kwok, and H. L. W. Chan, “Dielectric and Piezoelectric Properties of K0.5Na0.5NbO3–AgSbO3 Lead-Free Ceramics,” J. Appl. Phys., 106 [3] 034102, 5pp (2009).
  • 60
    D. Damjanovic, “Contributions to the Piezoelectric Effect in Ferroelectric Single Crystals and Ceramics,” J. Am. Ceram. Soc., 88 [10] 266376 (2005).
  • 61
    M. J. Haun, Z. Q. Zhuang, E. Furman, S. J. Jang, and L. E. Cross, “Thermodynamic Theory of the Lead Zirconate-Titanate Solid-Solution System, .3. Curie Constant and 6th-Order Polarization Interaction Dielelctric Stiffness Coefficients,” Ferroelectrics, 99, 4554 (1989).
  • 62
    M. J. Haun, E. Furman, S. J. Jang, and L. E. Cross, “Thermodynamic Theory of the Lead Zirconate-Titanate Solid-Solution System, .5. Theoretical Calculations,” Ferroelectrics, 99, 6386 (1989).
  • 63
    D. Damjanovic and M. Demartin, “Contribution of the Irreversible Displacement of Domain Walls to the Piezoelectric Effect in Barium Titanate and Lead Zirconate Titanate Ceramics,” J. Phys.: Condens. Matter, 9 [23] 494353 (1997).
  • 64
    B. P. Zhang, L. M. Zhang, J.-F. Li, X. N. Ding, and H. L. Zhang, “Effect of Sintering Temperature on Electrical Properties of Na0.5K0.5NbO3 Lead-Free Piezoelectric Ceramics Prepared by Normal Sintering,” Ferroelectrics, 358 [1] 18895 (2007).
  • 65
    M. Fukada, T. Saito, H. Kume, and T. Wada, “Fabrication of Lead-Free Piezoelectric (Na0.5K0.5)NbO3 Ceramics by a Modified Solid-State Reaction Method,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 55 [5] 98893 (2008).
  • 66
    Y. H. Lee, J. H. Cho, B. I. Kim, and D. K. Choi, “Piezoelectric Properties and Densification Based on Control of Volatile Mass of Potassium and Sodium in (K0.5Na0.5)NbO3 Ceramics,” Jpn. J. Appl. Phys., 47 [6] 46202 (2008).
  • 67
    R. E. Jaeger and L. Egerton, “Hot Pressing of Potassium-Sodium Niobates,” J. Am. Ceram. Soc., 45 [5] 20913 (1962).
  • 68
    G. H. Haertling, “Properties of Hot-Pressed Ferroelectric Alkali Niobate Ceramics,” J. Am. Ceram. Soc., 50 [6] 32930 (1967).
  • 69
    J.-F. Li, K. Wang, B. P. Zhang, and L. M. Zhang, “Ferroelectric and Piezoelectric Properties of Fine-Grained Na0.5K0.5NbO3 Lead-Free Piezoelectric Ceramics Prepared by Spark Plasma Sintering,” J. Am. Ceram. Soc., 89 [2] 7069 (2006).
  • 70
    K. Wang, B. P. Zhang, J.-F. Li, and L. M. Zhang, “Lead-Free Na0.5K0.5NbO3 Piezoelectric Ceramics Fabricated by Spark Plasma Sintering: Annealing Effect on Electrical Properties,” J. Electroceram., 21, 2514 (2008).
  • 71
    R. P. Wang, R. J. Xie, T. Sekiya, Y. Shimojo, Y. Akimune, N. Hirosaki, and M. Itoh, “Piezoelectric Properties of Spark-Plasma-Sintered (Na0.5K0.5)NbO3-PbTiO3 Ceramics,” Jpn. J. Appl. Phys., Part 1, 41 [11B] 711922 (2002).
  • 72
    R. P. Wang, R. J. Xie, T. Sekiya, and Y. Shimojo, “Fabrication and Characterization of Potassium-Sodium Niobate Piezoelectric Ceramics by Spark-Plasma-Sintering Method,” Mater. Res. Bull., 39 [11] 170915 (2004).
  • 73
    S. N. Murty, K. Umakantham, and A. Bhanumathi, “Ferroelectric Behavior of Lanthanum Doped (Na, K)NbO3 Ceramics for Transducer Applications,” Ferroelectrics, 82, 1417 (1988).
  • 74
    S. N. Murty, K. V. R. Murty, K. Umakantham, and A. Bhanumathi, “Modified (Na, K)NbO3 Ceramics for Transducer Applications,” Ferroelectrics, 102, 2437 (1990).
  • 75
    S. Y. Chu, W. Water, Y. D. Juang, and J. T. Liaw, “Properties of (Na, K)NbO3 and (Li, Na, K)NbO3 Xeramic Mixed Systems,” Ferroelectrics, 287, 2333 (2003).
  • 76
    S. J. Zhang, R. Xia, and T. R. Shrout, “Lead-Free Piezoelectric Ceramics vs. PZT?J. Electroceram., 19 [4] 2517 (2007).
  • 77
    H. Takao, Y. Saito, Y. Aoki, and K. Horibuchi, “Microstructural Evolution of Crystalline-Oriented (K0.5Na0.5)NbO3 Piezoelectric Ceramics With a Sintering Aid of CuO,” J. Am. Ceram. Soc., 89 [6] 19516 (2006).
  • 78
    S. Huo, S. Yuan, Z. Tian, C. Wang, Y. Qiu, and C. Randall, “Grain Size Effects on the Ferroelectric and Piezoelectric Properties of Na0.5K0.5NbO3 Ceramics Prepared by Pechini Method,” J. Am. Ceram. Soc., 95 [4] 13837 (2012).
  • 79
    M. Eriksson, H. Yan, G. Viola, H. Ning, D. Gruner, M. Nygren, M. J. Reece, and Z. Shen, “Ferroelectric Domain Structures and Electrical Properties of Fine-Grained Lead-Free Sodium Potassium Niobate Ceramics,” J. Am. Ceram. Soc., 94 [10] 33916 (2011).
  • 80
    M. Matsubara, K. Kikuta, and S. Hirano, “Piezoelectric Properties of (K0.5Na0.5)(Nb1-xTax)O3–K5.4CuTa10O29 Ceramics,” J. Appl. Phys., 97 [11] 114105, 7pp (2005).
  • 81
    Y. H. Zhen and J.-F. Li, “Normal Sintering of (K, Na)NbO3-Based Ceramics: Influence of Sintering Temperature on Densification, Microstructure, and Electrical Properties,” J. Am. Ceram. Soc., 89 [12] 366975 (2006).
  • 82
    M. S. Kim, S. J. Jeong, and and. J. S. Song, “Microstructures and Piezoelectric Properties in the Li2O-Excess 0.95(Na0.5K0.5)NbO3–0.05LiTaO3 Ceramics,” J. Am. Ceram. Soc., 90 [10] 333840 (2007).
  • 83
    M. S. Kim, D. S. Lee, E. C. Park, S. J. Jeong, and J. S. Song, “Effect of Na2O Additions on the Sinterability and Piezoelectric Properties of Lead-Free 95(Na0.5K0.5)NbO3–5LiTaO3 Ceramics,” J. Eur. Ceram. Soc., 27, 41214 (2007).
  • 84
    D. Lin, K. W. Kwok, and H. L. W. Chan, “Microstructure, Phase Transition, and Electrical Properties of (K0.5Na0.5)1-xLix(Nb1-yTay)O3 Lead-Free Piezoelectric Ceramics,” J. Appl. Phys., 102 [3] 034102, 7pp (2007).
  • 85
    P. Zhao, B. P. Zhang, and J.-F. Li, “Enhancing Piezoelectric d33 Coefficient in Li/Ta-Codoped Lead-Free (Na,K)NbO3 Ceramics by Compensating Na and K at a Fixed Ratio,” Appl. Phys. Lett., 91 [17] 172901, 3pp (2007).
  • 86
    P. Zhao, B. P. Zhang, and J. F. Li, “Enhanced Dielectric and Piezoelectric Properties in LiTaO3-Doped Lead-Free (K, Na)NbO3 Ceramics by Optimizing Sintering Temperature,” Scripta Mater., 58 [6] 42932 (2008).
  • 87
    Z.-Y. Shen, Y. Zhen, K. Wang, and J.-F. Li, “Influence of Sintering Temperature on Grain Growth and Phase Structure of Compositionally Optimized High-Performance Li/Ta-Modified (Na, K)NbO3 Ceramics,” J. Am. Ceram. Soc., 92 [8] 174852 (2009).
  • 88
    J. L. Zhang, X. J. Zong, L. Wu, Y. Gao, P. Zheng, and S. F. Shao, “Polymorphic Phase Transition and Excellent Piezoelectric Performance of (K0.55Na0.45)0.965Li0.035Nb0.80Ta0.20O3 Lead-Free Ceramics,” Appl. Phys. Lett., 95 [2] 022909, 3pp (2009).
  • 89
    Z.-Y. Shen, J.-F. Li, K. Wang, S. Xu, W. Jiang, and Q. Deng, “Electrical and Mechanical Properties of Fine-Grained Li/Ta-Modified (Na,K)NbO3-Based Piezoceramics Prepared by Spark Plasma Sintering,” J. Am. Ceram. Soc., 93 [5] 137883 (2010).
  • 90
    S. J. Zhang, R. Xia, T. R. Shrout, G. Z. Zang, and J. F. Wang, “Characterization of Lead Free (K0.5Na0.5)NbO3–LiSbO3 Piezoceramic,” Solid State Commun., 141 [12] 6759 (2007).
  • 91
    G. Z. Zang, J. F. Wang, H. C. Chen, W. B. Su, C. M. Wang, P. Qi, B. Q. Ming, J. Du, L. M. Zheng, S. J. Zhang, and T. R. Shrout, “Perovskite (Na0.5K0.5)1-x(LiSb)xNb1-xO3 Lead-Free Piezoceramics,” Appl. Phys. Lett., 88 [21] 212908, 3pp (2006).
  • 92
    H. Li, W. Y. Shih, and W. H. Shih, “Effect of Antimony Concentration on the Crystalline Structure, Dielectric, and Piezoelectric Properties of (Na0.5K0.5)0.945Li0.055Nb1-xSbxO3 Solid Solutions,” J. Am. Ceram. Soc., 90 [10] 30702 (2007).
  • 93
    E. K. Akdoğan, K. Kerman, M. Abazari, and A. Safari, “Origin of High Piezoelectric Activity in Ferroelectric (K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3 Ceramics,” Appl. Phys. Lett., 92 [11] 112908, 3pp (2008).
  • 94
    Y. F. Chang, Z. P. Yang, Y. T. Hou, Z. H. Liu, and Z. L. Wang, “Effects of Li Content on the Phase Structure and Electrical Properties of Lead-Free (K0.46-x/2Na0.54-x/2Lix)(Nb0.76Ta0.20Sb0.04)O3 Ceramics,” Appl. Phys. Lett., 90 [23] 232905, 3pp (2007).
  • 95
    Y. F. Chang, Z. P. Yang, and L. L. Wei, “Microstructure, Density, and Dielectric Properties of Lead-Free (K0.44Na0.52Li0.04)(Nb0.96-xTaxSb0.04)O3 Piezoelectric Ceramics,” J. Am. Ceram. Soc., 90 [5] 16568 (2007).
  • 96
    J. Fu, R. Z. Zuo, X. S. Fang, and K. Liu, “Lead-Free Ceramics Based on Alkaline Niobate Tantalate Antimonate with Excellent Dielectric and Piezoelectric Properties,” Mater. Res. Bull., 44 [5] 118890 (2009).
  • 97
    J. G. Wu, T. Peng, Y. Y. Wang, D. Q. Xiao, J. M. Zhu, Y. Jin, J. Zhu, P. Yu, L. Wu, and Y. H. Jiang, “Phase Structure and Electrical Properties of (K0.48Na0.52)(Nb0.95Ta0.05)O3–LiSbO3 Lead-Free Piezoelectric Ceramics,” J. Am. Ceram. Soc., 91 [1] 31921 (2008).
  • 98
    J. G. Wu, Y. Y. Wang, D. Q. Xiao, J. G. Zhu, and Z. H. Pu, “Effects of Ag Content on the Phase Structure and Piezoelectric Properties of (K0.44-xNa0.52Li0.04Agx)(Nb0.91Ta0.05Sb0.04)O3 Lead-Free Ceramics,” Appl. Phys. Lett., 91 [13] 132914, 3pp (2007).
  • 99
    Z. P. Yang, Y. F. Chang, and L. L. Wei, “Phase Transitional Behavior and Electrical Properties of Lead-Free (K0.44Na0.52Li0.04)(Nb0.96-xTaxSb0.04)O3 Piezoelectric Ceramics,” Appl. Phys. Lett., 90 [4] 042911, 3pp (2007).
  • 100
    P. Zhao, B. P. Zhang, R. Tu, and T. Goto, “High Piezoelectric d33 Coefficient in Li/Ta/Sb-Codoped Lead-Free (Na,K)NbO3 Ceramics Sintered at Optimal Temperature,” J. Am. Ceram. Soc., 91 [9] 307881 (2008).
  • 101
    R. Z. Zuo, J. Fu, and D. Y. Lv, “Phase Transformation and Tunable Piezoelectric Properties of Lead-Free (Na0.52K0.48-xLix)(Nb1-x-ySbyTax)O3 System,” J. Am. Ceram. Soc., 92 [1] 2835 (2009).
  • 102
    C. Lei, and Z. G. Ye, “Lead-Free Piezoelectric Ceramics Derived From the K0.5Na0.5NbO3-AgNbO3 Solid Solution System,” Appl. Phys. Lett., 93 [4] 042901, 3pp (2008).
  • 103
    J.-J. Zhou, K. Wang, F. Li, J.-F. Li, X.-W. Zhang, and Q.-M. Wang, “High and Frequency-Insensitive Converse Piezoelectric Coefficient Obtained in AgSbO3-Modified (Li, K, Na)(Nb, Ta)O3 Lead-Free Piezoceramics,” J. Am. Ceram. Soc., 96 [2] 51923 (2013).
  • 104
    R. Z. Zuo, C. Ye, and X. S. Fang, “Dielectric and Piezoelectric Properties of Lead Free Na0.5K0.5NbO3–BiScO3 Ceramics,” Jpn. J. Appl. Phys., Part 1, 46 [10A] 67336 (2007).
  • 105
    K. Wang, F.-Z. Yao, W. Jo, D. Gobeljic, V. V. Shvartsman, D. C. Lupascu, J.-F. Li, and J. Rödel, “Temperature-Insensitive (K, Na)NbO3-Based Lead-Free Piezoactuator Ceramics,” Adv. Funct. Mater., 23 [33] 407986 (2013).
  • 106
    S. J. Zhang, R. Xia, and T. R. Shrout, “Modified (K0.5Na0.5)NbO3 Based Lead-Free Piezoelectrics With Broad Temperature Usage Range,” Appl. Phys. Lett., 91 [13] 132913, 3pp (2007).
  • 107
    S. J. Zhang, R. Xia, H. Hao, H. X. Liu, and T. R. Shrout, “Mitigation of Thermal and Fatigue Behavior in K0.5Na0.5NbO3-Based Lead Free Piezoceramics,” Appl. Phys. Lett., 92 152904, 3pp (2008).
  • 108
    J. G. Wu, D. Q. Xiao, Y. Y. Wang, W. J. Wu, B. Zhang, and J. G. Zhu, “Improved Temperature Stability of CaTiO3-Modified [(K0.5Na0.5)0.96)Li0.04](Nb0.91Sb0.05Ta0.04)O3 Lead-Free Piezoelectric Ceramics,” J. Appl. Phys., 104 [2] 024102, 4pp (2008).
  • 109
    H. Y. Park, C. W. Ahn, H. C. Song, J. H. Lee, S. Nahm, K. Uchino, H. G. Lee, and H. J. Lee, “Microstructure and Piezoelectric Properties of 0.95(Na0.5K0.5)NbO3-0.05BaTiO3 Ceramics,” Appl. Phys. Lett., 89 [6] 062906, 3pp (2006).
  • 110
    R. Zuo and J. Fu, “Rhombohedral-Tetragonal Phase Coexistence and Piezoelectric Properties of (NaK)(NbSb)O3–LiTaO3–BaZrO3 Lead-Free Ceramics,” J. Am. Ceram. Soc., 94 [5] 146770 (2011).
  • 111
    D. Lin, M. S. Guo, K. H. Lam, K. W. Kwok, and H. L. W. Chan, “Lead-Free Piezoelectric Ceramic (K0.5Na0.5)NbO3 With MnO2 and K5.4Cu1.3Ta10O29 Doping for Piezoelectric Transformer Application,” Smart Mater. Struct., 17 [3] 035002, 6pp (2008).
  • 112
    K. H. Cho, H. Y. Park, C. W. Ahn, S. Nahm, K. Uchino, S. H. Park, H. G. Lee, and H. J. Lee, “Microstructure and Piezoelectric Properties of 0.95(Na0.5K0.5)NbO3–0.05SrTiO3 Ceramics,” J. Am. Ceram. Soc., 90 [6] 19469 (2007).
  • 113
    X. Li, L. Wu, D. Q. Xiao, J. G. Zhu, P. Yu, Y. H. Jiang, and J. G. Wu, “Microstructure and Electrical Properties of (1-x)(K0.5Na0.5)NbO3–XBiFeO3 Piezoelectric Ceramics,” Phys. Status Solidi A, 205 [5] 12114 (2008).
  • 114
    J.-J. Zhou, J.-F. Li, and X.-W. Zhang, “BiFeO3-Modified (Li, K, Na)(Nb, Ta)O3 Lead-Free Piezoelectric Ceramics With Temperature-Stable Piezoelectric Property and Enhanced Mechanical Strength,” J. Mater. Sci., 47 [4] 176773 (2012).
  • 115
    R. Z. Zuo, X. S. Fang, and C. Ye, “Phase Structures and Electrical Properties of New Lead-Free (Na0.5K0.5)NbO3–(Bi0.5Na0.5)TiO3 Ceramics,” Appl. Phys. Lett., 90 [9] 092904, 3pp (2007).
  • 116
    R. Z. Zuo, X. S. Fang, C. Ye, and L. T. Li, “Phase Transitional Behavior and Piezoelectric Properties of Lead-Free (Na0.5K0.5)NbO3–(Bi0.5K0.5)TiO3 Ceramics,” J. Am. Ceram. Soc., 90 [8] 24248 (2007).
  • 117
    H. L. Du, W. C. Zhou, F. Luo, D. M. Zhu, S. B. Qu, Y. Li, and Z. B. Pei, “Polymorphic Phase Transition Dependence of Piezoelectric Properties in (K0.5Na0.5)NbO3–(Bi0.5K0.5)TiO3 Lead-Free Ceramics,” J. Phys. D: Appl. Phys., 41 [11] 115413, 5pp (2008).
  • 118
    J.-J. Zhou, J.-F. Li, and X.-W. Zhang, “Orthorhombic to Tetragonal Phase Transition due to Stress Release in (Li, Ta)-Doped (K, Na)NbO3 Lead-Free Piezoceramics,” J. Eur. Ceram. Soc., 32 [2] 26770 (2012).
  • 119
    T. Leist, T. Granzow, W. Jo, and J. Rödel, “Effect of Tetragonal Distortion on Ferroelectric Domain Switching: A Case Study on La-Doped BiFeO3–PbTiO3 Ceramics,” J. Appl. Phys., 108 [1] 014103, 6pp (2010).
  • 120
    S. Wada, S. Suzuki, T. Noma, T. Suzuki, M. Osada, M. Kakihana, S. E. Park, L. E. Cross, and T. R. Shrout, “Enhanced Piezoelectric Property of Barium Titanate Single Crystals With Engineered Domain Configurations,” Jpn. J. Appl. Phys., Part 1, 38 [9B] 550511 (1999).
  • 121
    S. Wada, K. Yako, H. Kakemoto, T. Tsurumi, and T. Kiguchi, “Enhanced Piezoelectric Properties of Barium Titanate Single Crystals with Different Engineered-Domain Sizes,” J. Appl. Phys., 98 [1] 014109, 7pp (2005).
  • 122
    J. H. Yin, and W. W. Cao, “Domain Configurations in Domain Engineered 0.955Pb(Zn1/3Nb2/3)O3–0.045PbTiO3 Single Crystals,” J. Appl. Phys., 87 [10] 743841 (2000).
  • 123
    T. Sluka, A. K. Tagantsev, D. Damjanovic, M. Gureev, and N. Setter, “Enhanced Electromechanical Response of Ferroelectrics due to Charged Domain Walls,” Nat. Commun., 3, 748, 7pp (2012).
  • 124
    J. Yoo, K. Lee, K. Chung, S. Lee, K. Kim, J. Hong, S. Ryu, and C. Lhee, “Piezoelectric and Dielectric Properties of (LiNaK)(NbTaSb)O3 Ceramics With Variation in Poling Temperature,” Jpn. J. Appl. Phys., 45 [9B] 74448 (2006).
  • 125
    R. Aoyagi, A. Takeda, M. Iwata, M. Maeda, T. Nishida, and T. Shiosaki, “Depolarization Temperature Shift of Li0.08Na0.92NbO3 Lead-Free Piezoelectric Ceramics by High-Electric-Field Poling,” Jpn. J. Appl. Phys., 47 [9] 768992 (2008).
  • 126
    T. Ogawa, M. Furukawa, and T. Tsukada, “Poling Field Dependence of Piezoelectric Properties and Hysteresis Loops of Polarization Versus Electric Field in Alkali Niobate Ceramics,” Jpn. J. Appl. Phys., 48 [9] 09KD07, 5pp (2009).
  • 127
    F. Rubio-Marcos, J. J. Romero, D. A. Ochoa, J. E. García, R. Perez, and J. F. Fernandez, “Effects of Poling Process on KNN-Modified Piezoceramic Properties,” J. Am. Ceram. Soc., 93 [2] 31821 (2010).
  • 128
    M. I. Morozov, H. Kungl, and M. J. Hoffmann, “Effects of Poling Over the Orthorhombic-Tetragonal Phase Transition Temperature in Compositionally Homogeneous (K, Na)NbO3-Based Ceramics,” Appl. Phys. Lett., 98 [13] 132908, 3pp (2011).
  • 129
    H. Ge, Y. Hou, X. Rao, M. Zhu, H. Wang, and H. Yan, “The Investigation of Depoling Mechanism of Densified KNbO3 Piezoelectric Ceramic,” Appl. Phys. Lett., 99 [3] 032905, 3pp (2011).
  • 130
    J. Yao, J. Li, D. Viehland, Y. Chang, and G. L. Messing, “Aging Associated Domain Evolution in the Orthorhombic Phase of <001> Textured (K0.5Na0.5)Nb0.97Sb0.03O3 Ceramics,” Appl. Phys. Lett., 100 [13] 132902, 3pp (2012).
  • 131
    E. Hollenstein, D. Damjanovic, and N. Setter, “Temperature Stability of the Piezoelectric Properties of Li-Modified KNN Ceramics,” J. Eur. Ceram. Soc., 27 [13–15] 40937 (2007).
  • 132
    Y. Wang, J. Wu, D. Xiao, B. Zhang, W. Wu, W. Shi, and J. Zhu, “Electrical Properties and Temperature Stability of a New Kind of Lead-Free Piezoelectric Ceramics,” J. Phys. D Appl. Phys., 41 [24] 245401, 6pp (2008).
  • 133
    J. G. Wu, D. Q. Xiao, Y. Y. Wang, W. J. Wu, B. Zhang, J. Li, and J. G. Zhu, “CaTiO3-Modified [(K0.5Na0.5)0.94Li0.06](Nb0.94Sb0.06)O3 Lead-Free Piezoelectric Ceramics With Improved Temperature Stability,” Scripta Mater., 59 [7] 7502 (2008).
  • 134
    T. A. Skidmore, T. P. Comyn, and S. J. Milne, “Temperature Stability of ([Na0.5K0.5NbO3]0.93–[LiTaO3]0.07) Lead-Free Piezoelectric Ceramics,” Appl. Phys. Lett., 94 [22] 222902, 3pp (2009).
  • 135
    D. Tanaka, T. Tsukada, M. Furukawa, S. Wada, and Y. Kuroiwa, “Thermal Reliability of Alkaline Niobate-Based Lead-Free Piezoelectric Ceramics,” Jpn. J. Appl. Phys., 48 [9] 09KD08, 4pp (2009).
  • 136
    Y. Chang, S. Poterala, Z. Yang, and G. L. Messing, “Enhanced Electromechanical Properties and Temperature Stability of Textured (K0.5Na0.5)NbO3-Based Piezoelectric Ceramics,” J. Am. Ceram. Soc., 94 [8] 24948 (2011).
  • 137
    B. Malič, H. Razpotnik, J. Koruza, S. Kokalj, J. Cilenšek, and M. Kosec, “Linear Thermal Expansion of Lead-Free Piezoelectric K0.5Na0.5NbO3 Ceramics in a Wide Temperature Range,” J. Am. Ceram. Soc., 94 [8] 22735 (2011).
  • 138
    R. Wang, H. Bando, T. Katsumata, Y. Inaguma, H. Taniguchi, and M. Itoh, “Tuning the Orthorhombic-Rhombohedral Phase Transition Temperature in Sodium Potassium Niobate by Incorporating Barium Zirconate,” Phys. Status Solidi RRL, 3 [5] 1424 (2009).
  • 139
    R. Zuo, J. Fu, D. Lv, and Y. Liu, “Antimony Tuned Rhombohedral-Orthorhombic Phase Transition and Enhanced Piezoelectric Properties in Sodium Potassium Niobate,” J. Am. Ceram. Soc., 93 [9] 27837 (2010).
  • 140
    J. Fu, R. Zuo, S. C. Wu, J. Z. Jiang, L. Li, T. Y. Yang, X. Wang, and L. Li, “Electric Field Induced Intermediate Phase and Polarization Rotation Path in Alkaline Niobate Based Piezoceramics Close to the Rhombohedral and Tetragonal Phase Boundary,” Appl. Phys. Lett., 100 [12] 122902, 5pp (2012).
  • 141
    J.-J. Zhou, J.-F. Li, L.-Q. Cheng, K. Wang, X.-W. Zhang, and Q.-M. Wang, “Addition of Small Amounts of BiFeO3 to (Li, K, Na)(Nb, Ta)O3 Lead-Free Ceramics: Influence on Phase Structure, Microstructure and Piezoelectric Properties,” J. Eur. Ceram. Soc., 32 [13] 357582 (2012).
  • 142
    S. Y. Choi, S. J. Jeong, D. S. Lee, M. S. Kim, J. S. Lee, J. H. Cho, B. I. Kim, and Y. Ikuhara, “Gigantic Electrostrain in Duplex Structured Alkaline Niobates,” Chem. Mater., 24 [17] 33639 (2012).
  • 143
    N. M. Hagh, B. Jadidian, and A. Safari, “Property-Processing Relationship in Lead-Free (K, Na, Li) NbO3-Solid Solution System,” J. Electroceram., 18 33946 (2007).
  • 144
    H. Birol, D. Damjanovic, and N. Setter, “Preparation and Characterization of (K0.5Na0.5)NbO3 Ceramics,” J. Eur. Ceram. Soc., 26 [6] 8616 (2006).
  • 145
    T. A. Skidmore and S. J. Milne, “Phase Development During Mixed-Oxide Processing of a [Na0.5K0.5NbO3]1-x–[LiTaO3]x Powder,” J. Mater. Res., 22 [8] 226572 (2007).
  • 146
    M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, and S. Hirano, “Processing and Piezoelectric Properties of Lead-Free (K, Na) (Nb,Ta)O3 Ceramics,” J. Am. Ceram. Soc., 88 [5] 11906 (2005).
  • 147
    Z.-Y. Shen, K. Wang, and J.-F. Li, “Combined Effects of Li Content and Sintering Temperature on Polymorphic Phase Boundary and Electrical Properties of Li/Ta Co-Doped (Na, K)NbO3 Lead-Free Piezoceramics,” Appl. Phys. A Mater., 97 [4] 9117 (2009).
  • 148
    S. Zhang, H. J. Lee, C. Ma, and X. Tan, “Sintering Effect on Microstructure and Properties of (K, Na)NbO3 Ceramics,” J. Am. Ceram. Soc., 94 [11] 365965 (2011).
  • 149
    C.-W. Ahn, C.-S. Park, C.-H. Choi, S. Nahm, M.-J. Yoo, H.-G. Lee, and S. Priya, “Sintering Behavior of Lead-Free (K, Na)NbO3-Based Piezoelectric Ceramics,” J. Am. Ceram. Soc., 92 [9] 20338 (2009).
  • 150
    C.-W. Ahn, H.-Y. Park, S. Nahm, K. Uchino, H.-G. Lee, and H.-J. Lee, “Structural Variation and Piezoelectric Properties of 0.95(Na0.5K0.5)NbO3–0.05BaTiO3 Ceramics,” Sens. Actuators, A, 136 [1] 25560 (2007).
  • 151
    L.-Q. Cheng, K. Wang, F.-Z. Yao, F. Zhu, and J.-F. Li, “Composition Inhomogeneity due to Alkaline Volatilization in Li-Modified (K, Na)NbO3 Lead-Free Piezoceramics,” J. Am. Ceram. Soc., 96 [9] 26935 (2013).
  • 152
    K. Wang and J.-F. Li, “(K, Na)NbO3-Based Lead-Free Piezoceramics: Phase Transition, Sintering and Property Enhancement,” J. Adv. Ceram., 1 [1] 2437 (2012).
  • 153
    P. Zhao, B.-P. Zhang, and J.-F. Li, “Influences of Sintering Temperature on Piezoelectric, Dielectric and Ferroelectric Properties of Li/Ta-Codoped Lead-Free (Na, K)NbO3 Ceramics,” J. Am. Ceram. Soc., 91 [5] 16902 (2008).
  • 154
    G. Shirane, R. Newnham, and R. Pepinsky, “Dielectric Properties and Phase Transitions of NaNbO3 and (Na, K)NbO3,” Phys. Rev., 96 [3] 5818 (1954).
  • 155
    F. Zhu, T. A. Skidmore, A. J. Bell, T. P. Comyn, C. W. James, M. Ward, and S. J. Milne, “Diffuse Dielectric Behaviour in Na0.5K0.5NbO3–LiTaO3–BiScO3 Lead-Free Ceramics,” Mater. Chem. Phys., 129, 4117 (2011).
  • 156
    L.-Q. Cheng, J.-J. Zhou, K. Wang, J.-F. Li, and Q. M. Wang, “Influence of Ball Milling on Sintering Behavior and Electrical Properties of (Li, Na, K)NbO3 Lead-Free Piezoceramics,” J. Mater. Sci., 47 [19] 690814 (2012).
  • 157
    P. K. Panda, “Review: Environmental Friendly Lead-Free Piezoelectric Materials,” J. Mater. Sci., 44 [19] 504962 (2009).
  • 158
    J.-F. Li, Y. Zhen, B.-P. Zhang, L.-M. Zhang, and K. Wang, “Normal Sintering of (K, Na)NbO3-Based Lead-Free Piezoelectric Ceramics,” Ceram. Int., 34 [4] 7836 (2008).
  • 159
    Y. H. Zhen and J.-F. Li, “Abnormal Grain Growth and New Core-Shell Structure in (K, Na)NbO3-Based Lead-Free Piezoelectric Ceramics,” J. Am. Ceram. Soc., 90 [11] 3496502 (2007).
  • 160
    W. Jo, D.-Y. Kim, and N.-M. Hwang, “Effect of Interface Structure on the Microstructural Evolution of Ceramics,” J. Am. Ceram. Soc., 89 [8] 236980 (2006).
  • 161
    U.-J. Chung, W. Jo, J.-H. Lee, N.-M. Hwang, and D.-Y. Kim, “Coarsening Process of Penetration-Twinned Grains in PMN-35 mol% PT Ceramics,” J. Am. Ceram. Soc., 87 [1] 1258 (2004).
  • 162
    W. Jo, U.-J. Chung, N.-M. Hwang, and D.-Y. Kim, “Effect of SiO2 and TiO2 Addition on the Morphology of Abnormally Grown Large Pb(Mg1/3Nb2/3)O3-35 mol% PbTiO3 Grains,” J. Am. Ceram. Soc., 88 [7] 19924 (2005).
  • 163
    R. López-Juárez, O. Novelo-Peralta, F. González-García, F. Rubio-Marcos, and M.-E. Villafuerte-Castrejón, “Ferroelectric Domain Structure of Lead-Free Potassium-Sodium Niobate Ceramics,” J. Eur. Ceram. Soc., 31 [9] 18614 (2011).
  • 164
    G. Han, J. Ryu, C.-W. Ahn, W.-H. Yoon, J.-J. Choi, B.-D. Hahn, J.-W. Kim, J.-H. Choi, and D.-S. Park, “High Piezoelectric Properties of KNN-Based Thick Films with Abnormal Grain Growth,” J. Am. Ceram. Soc., 95 [5] 148992 (2012).
  • 165
    M.-S. Kim, S.-J. Jeong, I.-S. Kim, J.-S. Song, and Y.-W. Oh, “(NaxK0.98-xLi0.02)(Nb0.8Ta0.2)O3 Lead-Free Piezoelectric Ceramics,” Jpn. J. Appl. Phys., 48 [1] 010204, 3pp (2009).
  • 166
    R.-P. Herber, G. A. Schneider, S. Wagner, and M. J. Hoffmann, “Characterization of Ferroelectric Domains in Morphotropic Potassium Sodium Niobate With Scanning Probe Microscopy,” Appl. Phys. Lett., 90 [25] 252905, 3pp (2007).
  • 167
    F. Zhu, M. B. Ward, T. P. Comyn, A. J. Bell, and S. J. Milne, “Dielectric and Piezoelectric Properties in the Lead-Free System Na0.5K0.5NbO3–BiScO3–LiTaO3,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58 [9] 18118 (2011).
  • 168
    Y. Wang, D. Damjanovic, N. Klein, E. Hollenstein, and N. Setter, “Compositional Inhomogeneity in Li- and Ta-Modified (K, Na)NbO3 Ceramics,” J. Am. Ceram. Soc., 90 [11] 34859 (2007).
  • 169
    B. Malic, J. Bernard, J. Holc, D. Jenko, and M. Kosec, “Alkaline-Earth Doping in (K, Na)NbO3 Based Piezoceramics,” J. Eur. Ceram. Soc., 25 [12] 270711 (2005).
  • 170
    J.-J. Zhou, L.-Q. Cheng, W. Ke, X.-W. Zhang, and J.-F. Li, “The Role of LiF for Effective Low-Temperature Sintering of (K, Na)NbO3-Based Lead-Free Piezoceramics,” Ceram. Int., in press (2013).
  • 171
    S.-H. Park, C.-W. Ahn, S. Nahm, and J.-S. Song, “Microstructure and Piezoelectric Properties of ZnO-Added (Na0.5K0.5)NbO3 Ceramics,” Jpn. J. Appl. Phys., 43 [8B] L10724 (2004).
  • 172
    D. M. Lin, K. W. Kwok, and H. L. W. Chan, “Piezoelectric and Ferroelectric Properties of Cu-Doped K0.5Na0.5NbO3 Lead-Free Ceramics,” J. Phys. D: Appl. Phys., 41 [4] 045401, 6pp (2008).
  • 173
    J. Bernard, A. Benčan, T. Rojac, J. Holc, B. Malič, and M. Kosec, “Low-Temperature Sintering of K0.5Na0.5NbO3 Ceramics,” J. Am. Ceram. Soc., 91 [7] 240911 (2008).
  • 174
    D. Lin, K. W. Kwok, and H. L. W. Chan, “Effects of MnO2 on the Microstructure and Electrical Properties of 0.94(K0.5Na0.5)NbO3-0.06Ba(Zr0.05Ti0.95)O3 Lead-Free Ceramics,” Mater. Chem. Phys., 109, 4558 (2008).
  • 175
    Q. Chen, L. Chen, Q. Li, X. Yue, D. Xiao, J. Zhu, X. Shi, and Z. Liu, “Piezoelectric Properties of K4CuNb8O23 Modified (Na0.5K0.5)NbO3 Lead-Free Piezoceramics,” J. Appl. Phys., 102 [10] 104109, 4pp (2007).
  • 176
    J. Ryu, J. J. Choi, B. D. Hahn, D. S. Park, W. H. Yoon, and K. Y. Kim, “Sintering and Piezoelectric Properties of KNN Ceramics Doped With KZT,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 54 [12] 25105 (2007).
  • 177
    H.-Y. Park, I.-T. Seo, M.-K. Choi, S. Nahm, H.-G. Lee, H.-W. Kang, and B.-H. Choi, “Microstructure and Piezoelectric Properties of the CuO-Added (Na0.5K0.5)(Nb0.97Sb0.03)O3 Lead-Free Piezoelectric Ceramics,” J. Appl. Phys., 104 [3] 034103, 7pp (2008).
  • 178
    T. Hungría, J. Galy, and A. Castro, “Spark Plasma Sintering as a Useful Technique to the Nanostructuration of Piezo-Ferroelectric Materials,” J. Adv. Eng. Mater., 11 [8] 61531 (2009).
  • 179
    S.-X. Song, Z. Wang, and G.-P. Shi, “Heating Mechanism of Spark Plasma Sintering,” Ceram. Int., 39 [2] 13936 (2013).
  • 180
    K. H. Lam, D. M. Lin, Y. Q. Ni, and H. L. W. Chan, “Lead-Free Piezoelectric KNN-Based Pin Transducers for Structural Monitoring Applications,” Struct. Health Monit., 8 [4] 2839 (2009).
  • 181
    T. Lee, K. W. Kwok, H. L. Li, and H. L. W. Chan, “Lead-Free Alkaline Niobate-Based Transducer for Ultrasonic Wirebonding Applications,” Sens. Actuators, A, 150 [2] 26771 (2009).
  • 182
    D. Zhou, K. H. Lam, Y. Chen, Q. Zhang, Y. C. Chiu, H. Luo, J. Dai, and H. L. W. Chan, “Lead-Free Piezoelectric Single Crystal Based 1-3 Composites for Ultrasonic Transducer Applications,” Sens. Actuators, A, 182, 95100 (2012).
  • 183
    L. Wu, D. Xiao, J. Wu, Y. Sun, D. Lin, J. Zhu, P. Yu, Y. Zhuang, and Q. Wei, “Good Temperature Stability of K0.5Na0.5NbO3 Based Lead-Free Ceramics and Their Applications in Buzzers,” J. Eur. Ceram. Soc., 28 [15] 29638 (2008).
  • 184
    M. Guo, K. H. Lam, D. M. Lin, S. Wang, K. W. Kwok, H. L. W. Chan, and X. Z. Zhao, “A Rosen-Type Piezoelectric Transformer Employing Lead-Free K0.5Na0.5NbO3 Ceramics,” J. Mater. Sci., 43 [2] 70914 (2007).
  • 185
    N. M. Hagh, B. Jadidian, E. Ashbahian, and A. Safari, “Lead-Free Piezoelectric Ceramic Transducer in the Donor-Doped K1/2Na1/2NbO3 Solid Solution System,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 55 [1] 21424 (2008).
  • 186
    J. Hong, J. Yoo, K. Lee, S. Lee, and H. Song, “Characteristics of Acoustic Emission Sensor Using Lead-Free (LiNaK)(NaTaSb)O3 Ceramics for Fluid Leak Detection at Power Plant Valves,” Jpn. J. Appl. Phys., 47 [4] 21924 (2008).
  • 187
    K. W. Kwok, S. F. Hon, and D. Lin, “Lead-Free Self-Focused Piezoelectric Transducers for Viscous Liquid Ejection,” Sens. Actuators, A, 168 [1] 16871 (2011).
  • 188
    K. H. Lam, D. M. Lin, and H. L. W. Chan, “Lead-Free Acoustic Emission Sensors,” Rev. Sci. Instrum., 78 [11] 115109, 4pp (2007).
  • 189
    E. Z. Li, H. Kakemoto, T. Hoshina, and T. Tsurumi, “A Shear-Mode Ultrasonic Motor Using Potassium Sodium Niobate-Based Ceramics with High Mechanical Quality Factor,” Jpn. J. Appl. Phys., 47 [9] 77026 (2008).
  • 190
    Z.-Y. Shen, J.-F. Li, R. Chen, Q. Zhou, and K. K. Shung, “Microscale 1-3-Type (Na, K)NbO3-Based Pb-Free Piezocomposites for High-Frequency Ultrasonic Transducer Applications,” J. Am. Ceram. Soc., 94 [5] 13469 (2011).
  • 191
    K. K. Shung, J. M. Cannata, and Q. F. Zhou, “Piezoelectric Materials for High Frequency Medical Imaging Applications: A Review,” J. Electroceram., 19 [1] 13945 (2007).
  • 192
    D. W. Wu, R. M. Chen, Q. F. Zhou, K. K. Shung, D. M. Lin, and H. L. W. Chan, “Lead-Free KNLNT Piezoelectric Ceramics for High-Frequency Ultrasonic Transducer Application,” Ultrasonics, 49 [3] 3958 (2009).
  • 193
    W. C. Xu, K. H. Lam, S. H. Choy, and H. L. W. Chan, “A Stepped Horn Transducer Driven by Lead-Free Piezoelectric Ceramics,” Integr. Ferroelectr., 89 [1] 8793 (2007).
  • 194
    M.-R. Yang, S.-Y. Chu, I.-H. Chan, and S.-K. Huang, “Fabrication and Characterization of Na0.5K0.5NbO3–CuNb2O6 Lead-Free Step-Down Piezoelectric Transformers,” J. Appl. Phys., 110 [4] 044503, 6pp (2011).
  • 195
    Y. Oh, J. Noh, J. Yoo, J. Kang, L. Hwang, and J. Hong, “Dielectric and Piezoelectric Properties of CeO2-Added Nonstoichiometric (Na0.5K0.5)0.97(Nb0.96Sb0.04)O3 Ceramics for Piezoelectric Energy Harvesting Device Applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58 [9] 18606 (2011).
  • 196
    E. Li, R. Sasaki, T. Hoshina, H. Takeda, and T. Tsurumi, “Miniature Ultrasonic Motor Using Shear Mode of Potassium Sodium Niobate-Based Lead-Free Piezoelectric Ceramics,” Jpn. J. Appl. Phys., 48 [9] 09KD11, 5pp (2009).
  • 197
    Z.-Y. Shen, Y. Xu, and J.-F. Li, “Fabrication and Electromechanical Properties of Microscale 1-3-Type Piezoelectric Composites Using (Na, K)NbO3-Based Pb-Free Piezoceramics,” J. Appl. Phys., 105 [10] 104103, 4pp (2009).
  • 198
    L.-Q. Cheng, K. Wang, and J.-F. Li, “Synthesis of Highly Piezoelectric Lead-Free (K, Na)NbO3 One-Dimensional Perovskite Nanostructures,” Chem. Commun., 49 [38] 40035 (2013).
  • 199
    Y. Xu and J.-F. Li, “A Facile Method to Fabricate Vertically Aligned (K, Na)NbO3 Lead-Free Piezoelectric Nanorods,” J. Mater. Chem., 22 [43] 232216 (2012).
  • 200
    D. Waller, J. Chen, and T. R. Gururaja, “Requirements of Piezoelectric Materials for Medical Ultrasound Transducers,ISAF '96. Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics, 2, 5658 (1996).
  • 201
    Y. Zhen and J.-F. Li, “Preparation and Electrical Properties of Fine-Scale 1-3 Lead Zirconic Titanate∕Epoxy Composite Thick Films for High-Frequency Ultrasonic Transducers,” J. Appl. Phys., 103 [8] 084119, 4pp (2008).
  • 202
    B. Ma, R. Zuo, J. Yu, Y. Ran, Y. Wang, and H. W. L. Chan, “Alkaline Niobate Based Lead-Free Ceramic Fiber/Polymer 1-3 Composites: Processing and Electromechanical Properties,” J. Mater. Sci.- Mater. Electron., 22 [11] 1697702 (2011).
  • 203
    Y. Zhen, J.-F. Li, and K. Wang, “Fabrication and Electrical Properties of Fine-Scale 1-3 Piezoceramic/Epoxy Composites Using (K,Na)NbO3-Based Lead-Free Ceramics,” Ferroelectrics, 358 [1] 1618 (2007).
  • 204
    V. F. Janas and A. Safari, “Overview of Fine-Scale Piezoelctric Ceramic/Polymer Composite Processing,” J. Am. Ceram. Soc., 78 [11] 294555 (1995).
  • 205
    J. W. Sliwa, S. Ayter, and J. P. Mohr III, “Method for Making Piezoelectric Composite”; U.S. Patent No. 5,239,736, 1993.
  • 206
    A. Abrar, D. Zhang, B. Su, T. W. Button, K. J. Kirk, and S. Cochran, “1-3 Connectivity Piezoelectric Ceramic-Polymer Composite Transducers Made With Viscous Polymer Processing for High Frequency Ultrasound,” Ultrasonics, 42 [1–9] 47984 (2004).
  • 207
    S. N. Wang, J.-F. Li, R. Watanabe, and M. Esashi, “Fabrication of Lead Zirconate Titanate Microrods for 1-3 Piezocomposites Using Hot Isostatic Pressing with Silicon Molds,” J. Am. Ceram. Soc., 82 [1] 2135 (1999).
  • 208
    M. Eyett, D. Bauerle, and W. Wersing, “Excimer-Laser-Induced Etching of Ceramic PbTi1-xZrxO3,” J. Appl. Phys., 62 [4] 15114 (1987).
  • 209
    N. A. Spaldin and M. Fiebig, “The Renaissance of Magnetoelectric Multiferroics,” Science, 309 [5733] 3912 (2005).
  • 210
    W. Eerenstein, N. D. Mathur, and J. F. Scott, “Multiferroic and Magnetoelectric Materials,” Nature, 442 [7104] 75965 (2006).
  • 211
    M. Fiebig, “Revival of the Magnetoelectric Effect,” J. Phys. D: Appl. Phys., 38 [8] R12352 (2005).
  • 212
    S. Dong, J. Zhai, J.-F. Li, D. Viehland, and S. Priya, “Multimodal System for Harvesting Magnetic and Mechanical Energy,” Appl. Phys. Lett., 93 [10] 103511, 3pp (2008).
  • 213
    C. A. F. Vaz, J. Hoffman, C. H. Ahn, and R. Ramesh, “Magnetoelectric Coupling Effects in Multiferroic Complex Oxide Composite Structures,” Adv. Mater., 22 [2627] 290018 (2010).
  • 214
    G. Srinivasan, R. Hayes, C. P. DeVreugd, V. M. Laletsin, and N. Paddubnaya, “Dynamic Magnetoelectric Effects in Bulk and Layered Composites of Cobalt Zinc Ferrite and Lead Zirconate Titanate,” Appl. Phys. A, 80 [4] 8917 (2003).
  • 215
    Y. Xu, J.-F. Li, J. Ma, and C.-W. Nan, “Microscale 1-3-Type Lead-Free Piezoelectric/Ferrite Composites Fabricated by a Modified Dice-and-Fill Method,” J. Phys. D: Appl. Phys., 45 [31] 315306, 6pp (2012).
  • 216
    Y. Xu, J.-F. Li, J. Ma, and C.-W. Nan, “Magnetoelectricity of Lateral 1-3 Type Composites With CoFe2O4 Ferromagnetic Microstrips Embedded in (K, Na)NbO3-Based Piezoceramic Substrate,” J. Appl. Phys., 110 [4] 044104, 4pp (2011).
  • 217
    Z. L. Wang, “Piezoelectric Nanostructures: From Growth Phenomena to Electric Nanogenerators,” MRS Bull., 32 [2] 10916 (2007).
  • 218
    Y.-D. Hou, L. Hou, T.-T. Zhang, M.-K. Zhu, H. Wang, and H. Yan, “(Na0.8K0.2)0.5Bi0.5TiO3 Nanowires: Low-Temperature Sol-Gel-Hydrothermal Synthesis and Densification,” J. Am. Ceram. Soc., 90 [6] 173843 (2007).
  • 219
    M.-R. Joung, H. Xu, J.-S. Kim, I.-T. Seo, S. Nahm, J.-Y. Kang, and S.-J. Yoon, “Structural Variation of Hydrothermally Synthesized KNbO3 Nanowires,” J. Appl. Phys., 111 [11] 114314, 5pp (2012).
  • 220
    S. J. Limmer, S. Seraji, M. J. Forbess, Y. Wu, T. P. Chou, C. Nguyen, and G. Cao, “Electrophoretic Gowth of Lead Zirconate Titanate Nanorods,” Adv. Mater., 13 [16] 126972 (2001).
  • 221
    J. J. Urban, W. S. Yun, Q. Gu, and H. Park, “Synthesis of Single-Crystalline Perovskite Nanorods Composed of Barium Titanate and Strontium Titanate,” J. Am. Chem. Soc., 124 [7] 11867 (2002).
  • 222
    J. J. Urban, J. E. Spanier, O. Y. Lian, W. S. Yun, and H. Park, “Single-Crystalline Barium Titanate Nanowires,” Adv. Mater., 15 [5] 4236 (2003).
  • 223
    D. Zhou, H. Gu, Y. Hu, H. Tian, Z. Wang, Z. Qian, and Y. Wang, “Synthesis, Characterization and Ferroelectric Properties of Lead-Free K0.5Na0.5NbO3 Nanotube Arrays,” J. Appl. Phys., 109 [11] 114104, 3pp (2011).
  • 224
    B. A. Hernandez, K.-S. Chang, E. R. Fisher, and P. K. Dorhout, “Sol-Gel Template Synthesis and Characterization of BaTiO3 and PbTiO3 Nanotubes,” Chem. Mater., 14 [2] 4802 (2002).
  • 225
    J. Varghese, R. W. Whatmore, and J. D. Holmes, “Ferroelectric Nanoparticles, Wires and Tubes: Synthesis, Characterisation and Applications,” J. Mater. Chem. C, 1 [15] 261838 (2013).
  • 226
    P. M. Rørvik, T. Grande, and M.-A. Einarsrud, “One-Dimensional Nanostructures of Ferroelectric Perovskites,” Adv. Mater., 23 [35] 400734 (2011).
  • 227
    C.-Y. Xu, L. Zhen, R. Yang, and Z. L. Wang, “Synthesis of Single-Crystalline Niobate Nanorods via Ion-Exchange Based on Molten-Salt Reaction,” J. Am. Chem. Soc., 129 [50] 154445 (2007).
  • 228
    Z. L. Wang, “Piezopotential Gated Nanowire Devices: Piezotronics and Piezo-Phototronics,” Nano Today, 5 [6] 54052 (2010).
  • 229
    B. Kumar and S.-W. Kim, “Recent Advances in Power Generation Through Piezoelectric Nanogenerators,” J. Mater. Chem., 21 [47] 1894658 (2011).
  • 230
    L. Li, J. Deng, J. Chen, X. Sun, R. Yu, G. Liu, and X. Xing, “Wire Structure and Morphology Transformation of Niobium Oxide and Niobates by Molten Salt Synthesis,” Chem. Mater., 21 [7] 120713 (2009).
  • 231
    L. Li, J. Deng, R. Yu, J. Chen, X. Wang, and X. Xing, “Phase Evolution in Low-Dimensional Niobium Oxide Synthesized by a Topochemical Method,” Inorg. Chem., 49 [4] 1397403 (2010).
  • 232
    S. Xu and J.-F. Li, “Synthesis and Piezoelectricity of Single-Crystalline (K, Na)NbO3 Nanobars,” J. Am. Ceram. Soc., 94 [11] 38128 (2011).
  • 233
    C. Sun, X. Xing, J. Chen, J. Deng, L. Li, R. Yu, L. Qiao, and G. Liu, “Hydrothermal Synthesis of Single Crystalline (K, Na)NbO3 Powders,” Eur. J. Inorg. Chem., 2007 [13] 18848 (2007).
  • 234
    Z. Wang, H. Gu, Y. Hu, K. Yang, M. Hu, D. Zhou, and J. Guan, “Synthesis, Growth Mechanism and Optical Properties of (K, Na)NbO3 Nanostructures,” Cryst. Eng. Commun., 12 [10] 315762 (2010).
  • 235
    R. Zuo, J. Rödel, R. Chen, and L. Li, “Sintering and Electrical Properties of Lead-Free Na0.5K0.5NbO3 Piezoelectric Ceramics,” J. Am. Ceram. Soc., 89 [6] 20105 (2006).
  • 236
    S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, “Self-Powered Nanowire Devices,” Nat. Nanotechnol., 5 [5] 36676 (2010).