• 1
    P. V. Giannoudis, H. Dinopoulos, and E. Tsiridis, “Bone Substitutes: An Update,” Injury Int. J. Care Injured, 36S, S207 (2005).
  • 2
    P. Habibovic and K. de Groot, “Osteoinductive Biomaterials – Properties and Relevance in Bone Repair,” J. Tissue Eng. Regener. Med., 1, 2532 (2007).
  • 3
    R. Z. LeGeros, A. Chohayeb, and A. Shulman, “Apatitic Calcium Phosphates: Possible Dental Restorative Materials,” J. Dent. Res., 61, 3437 (1982).
  • 4
    W. E. Brown and L. C. Chow, “A New Calcium Phosphate Setting Cement,” J. Dent. Res., 62 [67] 2 (1983).
  • 5
    G. Daculsi, R. Z. Legeros, E. Nery, K. Lynch, and B. Kerebe, “Transformation of Biphasic Calcium Phosphate Ceramics in vivo: Ultrastructural and Physicochemical Characterization,” J. Biomed. Mat. Res., 23, 88394 (1989).
  • 6
    L. C. Chow, “Next Generation Calcium Phosphate-Based Biomaterials,” Dent. Mater., 28 [1] 110 (2009).
  • 7
    R. Z. Legeros, S. Lin, R. Rohanizadeh, D. Mijares, and J. P. Legeros, “Biphasic Calcium Phosphate Bioceramics: Preparation, Properties and Applications,” J. Mater. Sci.: Mater. Med., 14 [3] 2019 (2003).
  • 8
    H. Yuan, Z. Yang, Y. Li, X. Zhan, J. D. de Bruijn, and K. de Groot, “Osteoinduction by Calcium Phosphate Biomaterials,” J. Mater. Sci.: Mater. Med., 9 [12] 7236 (1998).
  • 9
    H. Yuan, H. Fernandes, P. Habibovic, J. de Boer, A. M. C. Barradas, A. de Ruiter, W. R. Walsh, C. A. van Blitterswijk, and J. D. de Bruijn, “Osteoinductive Ceramics as Synthetic Alternative to Autologous Bone Grafting,” Proc. Natl Acad. Sci. USA, 107 [31] 136149 (2010).
  • 10
    D. Le Nihouannen, G. Daculsi, A. Saffarzadeh, O. Gauthier, S. Delplace, P. Pilet, and P. Layrolle, “Ectopic Bone Formation by Microporous Calcium Phosphate Ceramic Particles in Sheep Muscles,” Bone, 36 [6] 108693 (2005).
  • 11
    P. Habibovic, H. Yuan, C. M. van der Valk, G. Meijer, C. A. van Blitterswijk, and K. de Groot, “3D Microenviroment as Essential Element for Osteoinduction,” Biomaterials, 26 [17] 356575 (2005).
  • 12
    A. M. C. Barradas, H. Yuan, C. A. van Blitterswijk, and P. Habibovic, “Osteoinductive Biomaterials: Current Knowledge of Properties, Experimental Models and Biological Mechanisms,” Eur. Cells Mater., 21, 40729 (2011).
  • 13
    Y. C. Chai, S. J. Roberts, J. Schrooten, and F. P. Luyten, “Probing the Osteoinductive Effect of Calcium Phosphate by Using an in vitro Biomimetic Model,” Tissue Eng. Part A, 1–7 [7–8] 108397 (2011).
  • 14
    M. P. Ginebra, E. Fernández, E. A. de Maeyer, R. M. Verbeeck, M. G. Boltong, J. Ginebra, F. C. Driessens, and J. A. Planell, “Setting Reaction and Hardening of an Apatitic Calcium Phosphate Cement,” J. Dent. Res., 76 [4] 90512 (1997).
  • 15
    Joint Committee for Powder Diffraction Studies [JCPDS] –International Center for Diffraction Data, and American Society for Testing and Materials, Powder Diffraction File. Joint Committee for Powder Diffraction Studies, Swarthmore, PA, 1991.
  • 16
    Leibniz Institute for Information Infrastructure, Inorganic Crystal Structure Database (ICSD). Leibniz Institute for Information Infrastructure, Karlsruhe, Germany, 1998
  • 17
    ASTMC266-89, “Standard Test Method for Time of Setting of Hydraulic Cement Paste by Gillmore Needles”; pp. 18991 in Annual Book of ASTM Standards, Vol. 04.01. Cement, Lime, Gypsum. ASTM, Philadelphia, PA, 1993
  • 18
    E. Fernandez, M. G. Boltong, M. P. Ginebra, F. C. M. Driessens, O. Bermúdez, and J. A. Planell, “Development of a Method to Measure the Period of Swelling of Calcium Phosphate Cements,” J. Mater. Sci. Lett., 15 [11] 10045 (1996).
  • 19
    C. R. Hankermeyer, K. L. Ohashi, D. C. Delaney, J. Ross, and B. R. Constantz, “Dissolution Rates of Carbonated Hydroxyapatite in Hydrochloric Acid,” Biomaterials, 23 [3] 74350 (2002).
  • 20
    K. Sariibrahimoglu, S. C. Leeuwenburgh, J. G. Wolke, L. Yubao, and J. A. Jansen, “Effect of Calcium Carbonate on Hardening, Physicochemical Properties, and in Vitro Degradation of Injectable Calcium Phosphate Cements,” J. Biomed. Mater. Res., Part A, 100 [3] 7129 (2012).
  • 21
    M. Espanol, R. A. Perez, E. B. Montufar, C. Marichal, A. Sacco, and M. P. Ginebra, “Intrinsic Porosity of Calcium Phosphate Cements and its Significance for Drug Delivery and Tissue Engineering Applications,” Acta Biomater., 5, 275262 (2010).
  • 22
    M. P. Ginebra, E. Fernández, F. C. M. Driessens, and J. A. Planell, “Modeling of the Hydrolysis of a-Tricalcium Phosphate,” J. Am. Ceram. Soc., 82, 280812 (2004).
  • 23
    D. Hadley, “The Nature of the Paste–Aggregate Interface”; Ph.D. Thesis, Purdue University, 173 (1972).
  • 24
    K. O. Kjellsen, H. M. Jennings, and B. Lagerblad, “Evidence of Hollow Shells in the Microstructure of Cement Paste,” Cement Concr. Res., 26 [4] 5939 (1996).
  • 25
    U. Gbureck, O. Grolms, J. E. Barralet, L. M. Grover, and R. Thull, “Mechanical Activation and Cement Formation of Beta-Tricalcium Phosphate,” Biomaterials, 24 [23] 412331 (2003).
  • 26
    J. Zhang and G. H. Nancollas, “Dissolution kinetics of calcium phosphates involved in mineralization”; pp. 4762 in Advances in Industrial Crystallization, Edited by J. Garside, R. J. Davey and A. G. Jones. Butterworth–Heinemann, London, 1991.
  • 27
    M. A. Lopez-Heredia, M. Bohner, W. Zhou, A. J. Winnubst, J. G. Wolke, and J. A. Jansen, “The Effect of Ball Milling Grinding Pathways on the Bulk and Reactivity Properties of Calcium Phosphate Cements,” J. Biomed. Mater. Res. B: Appl. Biomater, 98 [1] 6879 (2011).
  • 28
    E. B. Montufar, Y. Maazouz, and M. P. Ginebra, “Relevance of the Setting Reaction to the Injectability of Tricalcium Phosphate Pastes,” Acta Biomater., 9, 618898 (2013).
  • 29
    M. Bohner, R. Luginbühl, C. Reber, N. Doebelin, G. Baroud, and E. Conforto, “A Physical Approach to Modify the Hydraulic Reactivity of Alpha-Tricalcium Phosphate Powder,” Acta Biomater., 5, 352435 (2009).
  • 30
    J. M. Illston, J. M. Dinwoodie, and A. A. Smith, Concrete, Timber, and Metals: The Nature and Behaviour of Structural Materials. Van Nostrand Reinhold, New York, NY (1979).
  • 31
    M. A. Issa, M. A. Issa, M. S. Islam, and A. Chudnovsky, “Size Effects in Concrete Fracture: Part I, Experimental Setup and Observations,” Int. J. Fracture, 102, 124 (2000).
  • 32
    S. Yamada, D. Heymann, J. M. Bouler, and G. Daculsi, “Osteoclastic Resorption of Calcium Phosphate Ceramics with Different Hydroxyapatite/β-Tricalcium Phosphate Ratios,” Biomaterials, 18 [15] 103741 (1997).
  • 33
    I. A. Silver, R. J. Murrills, and D. J. Etherington, “Microelectrode Studies on the Acid Microenvironment Beneath Adherent Macrophages and Osteoclasts,” Exp. Cell Res., 175 [2] 26676 (1988).
  • 34
    M. Bohner, J. Lemaıtre, and T. A. Ring, “Kinetics of Dissolution of β-Tricalcium Phosphate,” J. Colloid Interf. Sci., 190, 3748 (1997).
  • 35
    M. A. Lopez-Heredia, M. Bongio, M. Bohner, V. Cuijpers, L. A. Winnubst, N. van Dijk, J. G. Wolke, J. J. van den Beucken, and J. A. Jansen, “Processing and in vivo Evaluation of Multiphasic Calcium Phosphate Cements with Dual Tricalcium Phosphate Phases,” Acta Biomater., 8 [9] 35008 (2012).