SEARCH

SEARCH BY CITATION

References

  • Aghajari, N., Feller, G., Gerday, C. and Haser, R. (2002) Structural basis of α-amylase activation by chloride. Protein Sci 11, 14351441.
  • Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 33893402.
  • Apweiler, R., Martin, M.J., O'Donovan, C., Magrane, M., Alam-Faruque, Y., Antunes, R., Barrell, D., Bely, B. et al. (2011) Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res 39, D214D219.
  • Bendtsen, J.D., Nielsen, H., von Heijne, G. and Brunak, S. (2004) Improved prediction of signal peptides-SignalP 3.0. J Mol Biol 340, 783795.
  • Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J. and Sayers, E.W. (2011) GenBank. Nucleic Acids Res 39, D32D37.
  • Boraston, A.B., Healey, M., Klassen, J., Ficko-Blean, E., Lammerts van Bueren, A. and Law, V. (2006) A structural and functional analysis of α-glucan recognition by family 25 and 26 carbohydrate-binding modules reveals a conserved mode of starch recognition. J Biol Chem 281, 587598.
  • Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72, 248254.
  • Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V. and Henrissat, B. (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37, D233D238.
  • Christiansen, C., Abou Hachem, M., Janecek, S., Viksø-Nielsen, A., Blennow, A. and Svensson, B. (2009) The carbohydrate-binding module family 20–diversity, structure, and function. FEBS J 276, 50065029.
  • Cipolla, A., Delbrassine, F., Da Lage, J.L. and Feller, G. (2012) Temperature adaptations in psychrophilic, mesophilic and thermophilic chloride-dependent α-amylases. Biochimie 94, 19431950.
  • Da Lage, J.L., Feller, G. and Janecek, S. (2004) Horizontal gene transfer from Euckarya to Bacteria and domain shuffling: α-amylase model. Cell Mol Life Sci 61, 97109.
  • D'Amico, S., Gerday, C. and Feller, G. (2000) Structural similarities and evolutionary relationships in chloride-dependent α-amylases. Gene 253, 95105.
  • Demirkan, E.S., Mikami, B., Adachi, M., Higasa, T. and Utsami, S. (2005) α-Amylase from B. amyloliquefaciens: purification, characterization, raw starch degradation and expression in E. coli. Process Biochem 40, 26292636.
  • Eksteen, J.M., Steyn, A.J., van Rensburg, P., Cordero Otero, R.R. and Pretorius, I.S. (2003) Cloning and characterization of a second α-amylase gene (LKA2) from Lipomyces kononenkoae IGC4052B and its expression in Saccharomyces cerevisiae. Yeast 20, 6978.
  • Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783791.
  • Finn, R.D., Mistry, J., Tate, J., Coggill, P., Heger, A., Pollington, J.E., Gavin, O.L., Gunasekaran, P. et al. (2010) The Pfam protein families database. Nucleic Acids Res 38, D211D222.
  • Galdino, A.S., Ulhoa, C.J., Moraes, L.M., Prates, M.V., Bloch, C. Jr and Torres, F.A. (2008) Cloning, molecular characterization and heterologous expression of AMY1, an α-amylase gene from Cryptococcus flavus. FEMS Microbiol Lett 280, 189194.
  • Gibson, R.M. and Svensson, B. (1987) Identification of tryptophanyl residues involved in binding of carbohydrate ligands to barley α-amylase 2. Carlsberg Res Commun 52, 373379.
  • Godany, A., Majzlova, K., Horvathova, V., Vidova, B. and Janecek, S. (2010) Tyrosine 39 of GH13 α-amylase from Thermococcus hydrothermalis contributes to its thermostability. Biologia 65, 408415.
  • Goyal, N., Gupta, J.K. and Soni, S.K. (2005) A novel raw starch digesting thermostable α-amylase from Bacillus sp. I-3 and its use in the direct hydrolysis of raw potato starch. Enzyme Microb Technol 37, 723734.
  • Gupta, R., Gigras, P., Mohapatra, H., Goswami, V.K. and Chauhan, B. (2003) Microbial α-amylases: a biotechnological perspective. Process Biochem 38, 15991616.
  • Gyemant, G., Zajacz, A., Becsi, B., Ragunath, C., Ramasubbu, N., Erdodi, F., Batta, G. and Kandra, L. (2009) Evidence for pentagalloyl glucose binding to human salivary α-amylase through aromatic amino acid residues. Biochim Biophys Acta 1794, 291296.
  • Hasan, K., Ismaya, W.T., Kardi, I., Andiyana, Y., Kusumawidjaya, S., Ishmayana, S., Subroto, T. and Soemitro, S. (2008) Proteolysis of α-amylase from Saccharomycopsis fibuligera: characterization of digestion products. Biologia 63, 10441050.
  • Henrissat, B. (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280, 309316.
  • Hostinova, E., Solovicova, A., Dvorsky, R. and Gasperik, J. (2003) Molecular cloning and 3D structure prediction of the first raw-starch-degrading glucoamylase without a separate starch-binding domain. Arch Biochem Biophys 411, 189195.
  • Hostinova, E., Janecek, S. and Gasperik, J. (2010) Gene sequence, bioinformatics and enzymatic characterization of α-amylase from Saccharomycopsis fibuligera KZ. Protein J 29, 355364.
  • Janecek, S. (2002) How many conserved sequence regions are there in the α-amylase family? Biologia 57(Suppl 11), 2941.
  • Janecek, S. and Sevcik, J. (1999) The evolution of starch-binding domain. FEBS Lett 456, 119125.
  • Janecek, S., Leveque, E., Belarbi, A. and Haye, B. (1999) Close evolutionary relatedness of α-amylases from Archaea and plants. J Mol Evol 48, 421426.
  • Janecek, S., Svensson, B. and MacGregor, E.A. (2011) Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals. Enzyme Microb Technol 49, 429440.
  • Jeanmougin, F., Thompson, J.D., Gouy, M., Higgins, D.G. and Gibson, T.J. (1998) Multiple sequence alignment with ClustalX. Trends Biochem Sci 23, 403405.
  • van der Kaaij, R.M., Janecek, S., van der Maarel, M.J.E.C. and Dijkhuizen, L. (2007) Phylogenetic and biochemical characterization of a novel cluster of intracellular fungal α-amylase enzymes. Microbiology 153, 40034015.
  • Kadziola, A., Søgaard, M., Svensson, B. and Haser, R. (1998) Molecular structure of a barley α-amylase-inhibitor complex: implications for starch binding and catalysis. J Mol Biol 278, 205217.
  • Kelley, L.A. and Sternberg, M.J.E. (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4, 363371.
  • Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.
  • Lei, Y., Peng, H., Wang, Y., Liu, Y., Han, F., Xiao, Y. and Gao, Y. (2012) Preferential and rapid degradation of raw rice starch by an α-amylase of glycoside hydrolase subfamily GH13_37. Appl Microbiol Biotechnol 94, 15771584.
  • Leveque, E., Janecek, S., Belarbi, A. and Haye, B. (2000) Thermophilic archaeal amylolytic enzymes. Enzyme Microb Technol 26, 213.
  • Liu, Y., Lei, Y., Zhang, X., Gao, Y., Xiao, Y. and Peng, H. (2012) Identification and phylogenetic characterization of a new subfamily of α-amylase enzymes from marine microorganisms. Mar Biotechnol 14, 253260.
  • van der Maarel, M.J.E.C., van der Veen, B., Uitdehaag, J.C.M., Leemhuis, H. and Dijkhuizen, L. (2002) Properties and application of starch converting enzymes of the amylase family. J Biotechnol 94, 137155.
  • MacGregor, E.A., Janecek, S. and Svensson, B. (2001) Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim Biophys Acta 1546, 120.
  • Machovic, M. and Janecek, S. (2006) Starch-binding domains in the post-genome era. Cell Mol Life Sci 63, 27102724.
  • Marshak, D.R., Kadonaga, J.T., Burgess, R.R., Knuth, M.W., Brennan, W.A. and Lin, S.-H. (1996) Strategies for Protein Purification and Characterization. New York: Cold Spring Harbor Laboratory Press.
  • Matsuura, Y., Kusunoki, M., Harada, W. and Kakudo, M. (1984) Structure and possible catalytic residues of Taka-amylase A. J Biochem 95, 697702.
  • Mijts, B.N. and Patel, B.K.C. (2002) Cloning, sequencing and expression of an α-amylase gene, amyA, from the thermophilic halophile Halothermothrix orenii and purification and biochemical characterization of the recombinant enzyme. Microbiology 148, 23432349.
  • Miller, G.L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31, 426428.
  • Mitsuiki, S., Mukaea, K., Sakai, M. and Goto, M. (2005) Comparative characterization of raw starch hydrolyzing α-amylases from various Bacillus strains. Enzyme Microb Technol 37, 410416.
  • Murakami, S., Nishimoto, H., Toyama, Y., Shimamoto, E., Takenaka, S., Kaulpiboon, J., Prousoontorn, M., Limpaseni, T. et al. (2007) Purification and characterization of two alkaline, thermotolerant α-amylases from Bacillus halodurans 38C-2-1 and expression of the cloned gene in Escherichia coli. Biosci Biotechnol Biochem 71, 23932401.
  • Noguchi, A., Inohara-Ochiai, M., Ishibashi, N., Fukami, H., Nakayama, T. and Nakao, M. (2008) A novel glucosylation enzyme: molecular cloning, expression, and characterization of Trichoderma viride JCM22452 α-amylase and enzymatic synthesis of some flavonoid monoglucosides and oligoglucosides. J Agric Food Chem 56, 1201612024.
  • Nurachman, Z., Kono, A., Radjasa, O.K. and Natalia, D. (2010) Identification a novel raw-starch-degrading-α-amylase from a tropical marine bacterium. Am J Biochem Biotechnol 6, 300306.
  • Oslancova, A. and Janecek, S. (2002) Oligo-1,6-glucosidase and neopullulanase enzyme subfamilies from the α-amylase family defined by the fifth conserved sequence region. Cell Mol Life Sci 59, 19451959.
  • Page, R.D. (1996) TreeView: an application to display phylogenetic trees on personal computer. Comput Appl Biosci 12, 357358.
  • Puspasari, F., Nurachman, Z., Noer, A.S., Radjasa, O.K., van der Maarel, M.J.E.C. and Natalia, D. (2011) Characteristics of raw starch degrading α-amylase from Bacillus aquimaris MKSC 6.2 associated with soft coral Sinularia sp. Starch/Staerke 63, 461467.
  • Ramasubbu, N., Paloth, V., Luo, Y., Brayer, G.D. and Levine, M.J. (1996) Structure of human salivary α-amylase at 1.6 A resolution: implications for its role in the oral cavity. Acta Crystallogr D Biol Crystallogr 52, 435446.
  • Robert, X., Haser, R., Gottschalk, T.E., Ratajczak, F., Driguez, H., Svensson, B. and Aghajari, N. (2003) The structure of barley α-amylase isozyme 1 reveals a novel role of domain C in substrate recognition and binding: a pair of sugar tongs. Structure 11, 973984.
  • Robert, X., Haser, R., Mori, H., Svensson, B. and Aghajari, N. (2005) Oligosaccharide binding to barley α-amylase 1. J Biol Chem 280, 3296832978.
  • Rodriguez-Sanoja, R., Morlon-Guyot, J., Jore, J., Pintado, J., Juge, N. and Guyot, P. (2000) Comparative characterization of complete and truncated forms of Lactobacillus amylovorus α-amylase and role of the C-terminal direct repeats in raw-starch binding. Appl Environ Microbiol 66, 33503356.
  • Rose, P.W., Beran, B., Bi, C., Bluhm, W.F., Dimitropoulos, D., Goodsell, D.S., Prlic, A., Quesada, M. et al. (2011) The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res 39, D392D401.
  • Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406425.
  • Sarian, F.D., van der Kaaij, R.M., Kralj, S., Wijbenga, D.J., Binnema, D., van der Maarel, M.J.E.C. and Dijkhuizen, L. (2012) Enzymatic degradation of granular potato starch by Microbacterium aurum strain B8.A. Appl Microbiol Biotechnol 93, 645654.
  • Sevcik, J., Hostinova, E., Solovicova, A., Gasperik, J., Dauter, Z. and Wilson, K.S. (2006) Structure of the complex of a yeast glucoamylase with acarbose reveals the presence of a raw starch binding site on the catalytic domain. FEBS J 273, 21612171.
  • Shatsky, M., Nussinov, R. and Wolfson, H.J. (2004) A method for simultaneous alignment of multiple protein structures. Proteins 56, 143156.
  • Søgaard, M., Kadziola, A., Haser, R. and Svensson, B. (1993) Site-directed mutagenesis of histidine 93, aspartic acid 180, glutamic acid 205, histidine 290, and aspartic acid 291 at the active site and tryptophan 279 at the raw starch binding site in barley α-amylase 1. J Biol Chem 268, 2248022484.
  • Stam, M.R., Danchin, E.G.J., Rancurel, C., Coutinho, P.M. and Henrissat, B. (2006) Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng Des Sel 19, 555562.
  • Tibbot, B.K., Wong, D.W.S. and Robertson, G.H. (2002) Studies on the C-terminal region of barley α-amylase 1 with emphasis on raw starch-binding. Biologia 57(Suppl 11), 229238.
  • Vidilaseris, K., Hidayat, K., Retnoningrum, D.S., Nurachman, Z., Noer, A.S. and Natalia, D. (2009) Biochemical characterization of a raw starch degrading α-amylase from the Indonesian marine bacterium Bacillus sp. ALSHL3. Biologia 64, 10471052.
  • Vujicic-Zagar, A. and Dijkstra, B.W. (2006) Monoclinic crystal form of Aspergillus niger α-amylase in complex with maltose at 1.8 Å resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 62, 716721.
  • Wang, W.J., Powell, A.D. and Oates, C.G. (1995) Pattern of enzymes hydrolysis in raw sago starch: effects of processing history. Carbohydr Polym 26, 9197.
  • Weber-Arden, J., Wilbert, O.M., Kabelitz, D. and Arden, B. (1996) Inverse PCR amplification of low-abundancy message of γδ T cell receptor genes. J Immunol Methods 197, 187192.
  • Witt, W. and Sauter, J.J. (1995) In vitro degradation of starch grain by phosphorylases and amylases from Poplar wood. J Plant Physiol 146, 3540.
  • Yoon, J.H., Kim, I.G., Kang, K.H., Oh, T.K. and Park, Y.H. (2003) Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 53, 12971303.