SEARCH

SEARCH BY CITATION

References

  • Aguilar, C.N. and Gutierrez-Sanchez, G. (2001a) Review sources, properties, applications and potential uses of tannin acyl hydrolase. Food Sci Technol Int 7, 373382.
  • Aguilar, C.N., Augur, C., Favela-Torres, E. and Viniegra-González, G. (2001b) Induction and repression patterns of fungal tannase in solid-state and submerged cultures. Process Biochem 36, 565570.
  • Aguilera-Carbo, A., Augur, C., Prado-Barragan, L.A., Favela-Torres, E. and Aguilar, C.N. (2008) Microbial production of ellagic acid and biodegradation of ellagitannins. Appl Microbiol Biotechnol 78, 189199.
  • Anderson, A.J. and Dawes, E.A. (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54, 450472.
  • Baptist, F., Zinger, L., Clement, J.C., Gallet, C., Guillemin, R., Martins, J.M., Sage, L., Shahnavaz, B. et al. (2008) Tannin impacts on microbial diversity and the functioning of alpine soils: a multidisciplinary approach. Environ Microbiol 10, 799809.
  • Bradford, M.M. (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248254.
  • Chauhan, A. and Jain, R.K. (2000) Degradation of o-nitrobenzoate via anthranilic acid (o- aminobenzoate) by Arthrobacter protophormiae RKJ100: a plasmid-encoded new pathway. Biochem Biophys Res Commun 267, 236244.
  • Clinical and Laboratory Standards Institute Performance standards for antimicrobial susceptibility testing (2007) Seventeenth informational supplement. CLSI: 352 Document M100-S17 Vol. 27, No. 1, Wayne, Pennsylvania.
  • Dekwer, D. and Hempel, D.C. (1999) Microaerophilic production of alginate by Azotobacter vinelandii, Von der Gemeinsamen Naturwissenscha ftlichen, Fakultat der Technischen UN. Carolo-Wilhelmina zu Braunschweig, Edited by Wael Sabra, aus Alexandria, Agypten. pp. 3754.
  • Deschamps, A.M., Modhudeau, G., Conti, M. and Lebeault, J.M. (1980) Bacteria degrading tannic acid and related compounds. J Ferment Technol 58, 9397.
  • Dubois, M., Gilles, K.A., Hamilton, J., Rebers, P.A. and Smith, F. (1956) Colorimetric method for determination of sugar and relative substances. Anal Chem 28, 350366.
  • Gauri, S.S., Mandal, S.M., Mondal, K.C., Dey, S. and Pati, B.R. (2009) Enhanced production and partial characterization of an extra cellular polysaccharide from newly isolated Azotobacter sp. SSB81. Bioresour Technol 100, 42404243.
  • Gauri, S.S., Mandal, S.M. and Pati, B.R. (2012) Impact of Azotobacter exopolysaccharides on sustainable agriculture. Appl Microbiol Biotechnol 95, 331338.
  • Groseclose, E.E. and Ribbons, D.W. (1981) Metabolism of resorcinylic compounds by bacteria: new pathway for resorcinol catabolism in Azotobacter vinelandii. J Bacteriol 146, 460466.
  • Halvorson, J.J. and Gonzalez, J.M. (2008) Tannic acid reduces recovery of water-soluble carbon and nitrogen from soil and affects the composition of Bradford-reactive soil protein. Soil Biol Biochem 40, 186197.
  • Herter, S., Schmidt, M., Thompson, M.L., Mikolasch, A. and Schauer, F. (2011) Study of enzymatic properties of phenol oxidase from nitrogen-fixing Azotobacter chroococcum. AMB Express 1, 14.
  • Krizman, M., Baricevi, D. and Prosek, M. (2007) Determination of phenolic compounds in fennel by HPLC and HPLC–MS using a monolithic reversed-phase column. J Pharm Biomed Anal 43, 481485.
  • Kuiters, A.T. and Sarink, H.M. (1987) Effects of acids on growth, mineral composition and chlorophyll content in some herbaceous woodland species Zeitsch. Pflanzen. And Bodenk., 15. pp. 84.
  • Kumar, R.A., Gunasekarn, P. and Lakshmanan, M. (1999) Biodegradation of tannic acid by Citrobacter freundii isolated from a tannery effluent. J Basic Microbiol 39, 161168.
  • Law, J.H. and Slepecky, R.A. (1961) Assay of poly β-hydroxyl-butyric acid. J Bacteriol 82, 3236.
  • Lekha, P.K. and Lonsane, B.K. (1997) Production and application of tannin acyl hydrolase: state of the art. Adv Appl Mirobiol 44, 215260.
  • Lin, T.Y. and Hassid, W.Z. (1966) Pathway of algnic acid synthesis in the marine brown alga, Fucus gardneri Silva. J Biol Chem 241, 52845297.
  • Makkar, H.P.S., Singh, B. and Kamar, D.N. (1994) Biodegradation of tannins in oak (Quercus incana) leaves by Sporotrichum pulveulentum. Lett Appl Microbiol 18, 3941.
  • Mandal, S.M. and Dey, S. (2008) LC-MALDI-TOF MS-based rapid identification of phenolic acids. J Biomol Tech 19, 116121.
  • Misan, A.C., Mimica-Dukic, N.M., Mandic, A.I., Sakac, M.B., Milovanovic, I.L. and Sedej, I.J. (2011) Development of a rapid resolution HPLC method for the separation and determination of 17 phenolic compounds in crude plant extracts. Cent Eur J Chem 9, 133142.
  • Mohapatra, P.K.D., Mondal, K.C. and Pati, B.R. (2007) Production of tannase by the immobilized cells of Bacillus licheniformis KBR6 in Ca-alginate beads. J Appl Microbiol 102, 14621467.
  • Mondal, K.C. and Pati, B.R. (2000) Studies on the extracellular tannase from newly isolated Bacillus licheniformis KBR 6. J Basic Microbiol 40, 223232.
  • Mondal, K.C., Banerjee, D., Banerjee, R. and Pati, B.R. (2001) Production and characterization of tannase from Bacillus cereus KBR9. J Gen Appl Microbiol 47, 263.
  • Moreno, J., Vargas-Garcia, C., Lopez, M.J. and Sanchez-Serrano, G. (1999) Growth and exopolysaccharide production by Azotobacter vinelandii on soil phenolic compounds. J Appl Microbiol 86, 439445.
  • O'Donovan, L. and Brooker, J.D. (2001) Effect of hydrolysable and condensed tannins on growth, morphology and metabolism of Streptococcus gallolyticus (S. caprinus) and Streptococcus bovis. Microbiology 147, 10251033.
  • Rehm, B.H.A. (ed.) (2009) Microbial exopolysaccharides: variety and potential applications. In Microbial Production of Biopolymers and Polymer Precursors: Applications and Perspectives. pp. 229254. Norfolk, UK: Caister Academic.
  • Rodriguez, H., Rivas, B., Gomez-Cordoves, C. and Munoz, R. (2008) Characterization of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748T. Int J Food Microbiol 121, 9298.
  • Sanchez-Patan, F., Monagas, M., Moreno-Arribas, M.V. and Bartolome, B. (2011) Determination of microbial phenolic acids in human faeces by UPLC-ESI-TQ MS. J Agric Food Chem 59, 22412247.
  • Shi, B., He, Q., Yao, K., Huang, W. and Li, Q. (2005) Production of ellagic acid from degradation of valonea tannins by Aspergillus niger and Candida utilis. J Chem Technol Biotechnol 80, 11541159.
  • Tyo, K.E., Zhou, H. and Stephanopoulos, G.N. (2006) High-throughput screen for poly-3-hydroxybutyrate in Escherichia coli and Synechocystis sp. Strain PCC6803. Appl Environ Microbiol 72, 34123417.
  • Worthington, K. and Worthington, V. (2011) Worthington enzyme manual. Worthington Biochemical Corporation (http://www.worthington-biochem.com/TY/assay.html).
  • Wu, F.J., Moreno, J. and Vela, G.R. (1987) Growth of Azotobacter vinelandii on soil nutrients. Appl Environ Microbiol 53, 489494.
  • Zeida, M., Wieser, M., Yoshida, T., Sugio, T. and Nagasawa, T. (1998) Purification and characterization of gallic acid decarboxylase from Pantoea agglomerans T 71. Appl Environ Microbiol 64, 47434747.