SEARCH

SEARCH BY CITATION

References

  • Bae, S. and Shoda, M. (2004) Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol Prog 20, 13661371.
  • Boyin, L., Jing, J.H. and Ding, Z.R. (1981) Plant Biochemistry Analytical Methods. Beijing: Science Publishing House.
  • Budhiono, A., Rosidi, B., Taher, H. and Iguchi, M. (1999) Kinetic aspects of bacterial cellulose formation in nata-de-coco culture system. Carbohydr Polym 40, 137143.
  • Chen, X.D., Xiong, L., Luo, C.R., Ding, F., Pan, W. and Xu, Z.B. (2012a) One method of low-acid hydrolysis of lignocellulosic biomass by micro-units infiltration bed. Chinese Patent CN 102260754 B.
  • Chen, X.F., Huang, C., Xiong, L., Chen, X.D. and Ma, L.L. (2012b) Microbial oil production from corncob acid hydrolysate by Trichosporon cutaneum. Biotechnol Lett 34, 10251028.
  • Cheng, K.C., Catchmark, J.M. and Demirci, A. (2009) Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose 16, 10331045.
  • Colom, X. and Carrillo, F. (2002) Crystallinity changes in lyocell and viscose-type fibres by caustic treatment. Eur Polymer J 38, 22252230.
  • Czaja, W., Krystynowicz, A., Bielecki, S. and Brown, R.M. Jr (2006) Microbial cellulose-the natural power to heal wounds. Biomaterials 27, 145151.
  • Dugan, J.M., Gough, J.E. and Eichhorn, S.J. (2013) Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine 8, 287298.
  • Hong, F. and Qiu, K. (2008) An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydr Polym 72, 545549.
  • Hong, F., Zhu, Y.X., Yang, G. and Yang, X.X. (2011) Wheat straw acid hydrolysate as a potential cost-effective feedstock for production of bacterial cellulose. J Chem Technol Biotechnol 86, 675680.
  • Hong, F., Guo, X., Zhang, S., Han, S., Yang, G. and Jonsson, L.J. (2012) Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresour Technol 104, 503508.
  • Huang, C., Zong, M.H., Wu, H. and Liu, Q.P. (2009) Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour Technol 100, 45354538.
  • Huang, C., Chen, X.F., Xiong, L., Chen, X.D. and Ma, L.L. (2012a) Oil production by the yeast Trichosporon dermatis cultured in enzymatic hydrolysates of corncobs. Bioresour Technol 110, 711714.
  • Huang, C., Wu, H., Li, R. and Zong, M.H. (2012b) Improving lipid production from bagasse hydrolysate with Trichosporon fermentans by response surface methodology. New Biotechnol 29, 372378.
  • Hussain, M.A., Huq, M.E., Rahman, S.M. and Ahmed, Z. (2002) Estimation of lignin in jute by titration method. Pak J Biol Sci 5, 521522.
  • Iguchi, M., Mitsuhashi, S., Ichimura, K., Nishi, Y., Uryu, M., Yamanaka, S. and Watanabe, K. (1988) Bacterial cellulose-containing molding material having high dynamic strength. US patent 4742164.
  • Ishihara, M., Matsunaga, M., Hayashi, N. and Tisler, V. (2002) Utilization of-xylose as carbon source for production of bacterial cellulose. Enzyme Microb Technol 31, 986991.
  • Kabi, F., Bareeba, F., Havrevoll, Ø. and Mpofu, I. (2005) Evaluation of protein degradation characteristics and metabolisable protein of elephant grass (Pennisetum purpureum) and locally available protein supplements. Livest Prod Sci 95, 143153.
  • Klason, P. (1910) Determination of lignin in sulphite wood pulp. Papierfabr 8, 12851286.
  • Kongruang, S. (2008) Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Appl Biochem Biotechnol 148, 245256.
  • Kurosumi, A., Sasaki, C., Yamashita, Y. and Nakamura, Y. (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76, 333335.
  • Liu, S.C. (2004) Analysis and Measurement of Pulping and Papermaking. Beijing: Chemical Industry Publising House.
  • Noro, N., Sugano, Y. and Shoda, M. (2004) Utilization of the buffering capacity of corn steep liquor in bacterial cellulose production by Acetobacter xylinum. Appl Microbiol Biotechnol 64, 199205.
  • Oh, S.Y., Yoo, D.I., Shin, Y. and Seo, G. (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340, 417428.
  • Phisalaphong, M. and Jatupaiboon, N. (2008) Biosynthesis and characterization of bacteria cellulose-chitosan film. Carbohydr Polym 74, 482488.
  • del Rio, J.C., Prinsen, P., Rencoret, J., Nieto, L., Jimenez-Barbero, J., Ralph, J., Martinez, A.T. and Gutierrez, A. (2012) Structural characterization of the lignin in the cortex and pith of elephant grass (Pennisetum purpureum) stems. J Agric Food Chem 60, 36193634.
  • Rubin, E. (2008) Genomics of cellulosic biofuels. Nature 454, 841845.
  • Shen, W., Chen, S., Shi, S., Li, X., Zhang, X., Hu, W. and Wang, H. (2009) Adsorption of Cu (II) and Pb (II) onto diethylenetriamine-bacterial cellulose. Carbohydr Polym 75, 110114.
  • Shezad, O., Khan, S., Khan, T. and Park, J.K. (2010) Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr Polym 82, 173180.
  • Somerville, C., Youngs, H., Taylor, C., Davis, S.C. and Long, S.P. (2010) Feedstocks for lignocellulosic biofuels. Science 329, 790792.
  • Sturcova, A., His, I., Apperley, D.C., Sugiyama, J. and Jarvis, M.C. (2004) Structural details of crystalline cellulose from higher plants. Biomacromolecules 5, 13331339.