SEARCH

SEARCH BY CITATION

References

  • Andersson, C., Hodge, D., Berglund, K.A. and Rova, U. (2007) Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli. Biotechnol Prog 23, 381388.
  • Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K.A., Tomita, M. et al. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2, 2006.0008.
  • Bachler, C., Schneider, P., Bahler, P., Lustig, A. and Erni, B. (2005) Escherichia coli dihydroxyacetone kinase controls gene expression by binding to transcription factor DhaR. EMBO J 24, 283293.
  • Blankschien, M.D., Clomburg, J.M. and Gonzalez, R. (2010) Metabolic engineering of Escherichia coli for the production of succinate from glycerol. Metab Eng 12, 409419.
  • Borges, E.R. and Pereira, N. Jr (2010) Succinic acid production from sugarcane bagasse hemicellulose hydrolysate by Actinobacillus succinogenes. J Ind Microbiol Biotechnol 38, 10011011.
  • Bozell, J.J. and Petersen, G.R. (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy's “Top 10” revisited. Green Chem 12, 539554.
  • Chatterjee, R., Millard, C.S., Champion, K., Clark, D.P. and Donnelly, M.I. (2001) Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli. Appl Environ Microbiol 67, 148154.
  • Chen, G.Q. (2010) Editorial: sustainable bioplastics for future applications. Biotechnol J 5, 1117.
  • Chen, Z., Liu, H., Zhang, J. and Liu, D. (2010) Elementary mode analysis for the rational design of efficient succinate conversion from glycerol by Escherichia coli. J Biomed Biotechnol 2010, 518743.
  • Cherepanov, P.P. and Wackernagel, W. (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158, 914.
  • Cunningham, D.S., Liu, Z., Domagalski, N., Koepsel, R.R., Ataai, M.M. and Domach, M.M. (2009) Pyruvate kinase-deficient Escherichia coli exhibits increased plasmid copy number and cyclic AMP levels. J Bacteriol 191, 30413049.
  • Datsenko, K.A. and Wanner, B.L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97, 66406645.
  • Dharmadi, Y., Murarka, A. and Gonzalez, R. (2006) Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94, 821829.
  • Feuer, R., Gottlieb, K., Viertel, G., Klotz, J., Schober, S., Bossert, M., Sawodny, O., Sprenger, G. et al. (2012) Model-based analysis of an adaptive evolution experiment with Escherichia coli in a pyruvate limited continuous culture with glycerol. EURASIP J Bioinform Syst Biol 2012, 14.
  • Gust, B., Challis, G.L., Fowler, K., Kieser, T. and Chater, K.F. (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100, 15411546.
  • Imanaka, H., Yamatsu, A., Fukui, T., Atomi, H. and Imanaka, T. (2006) Phosphoenolpyruvate synthase plays an essential role for glycolysis in the modified Embden-Meyerhof pathway in Thermococcus kodakarensis. Mol Microbiol 61, 898909.
  • Inui, M., Murakami, S., Okino, S., Kawaguchi, H., Vertes, A.A. and Yukawa, H. (2004) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7, 182196.
  • Jantama, K., Zhang, X., Moore, J.C., Shanmugam, K.T., Svoronos, S.A. and Ingram, L.O. (2008) Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol Bioeng 101, 881893.
  • Kai, Y., Matsumura, H., Inoue, T., Terada, K., Nagara, Y., Yoshinaga, T., Kihara, A., Tsumura, K. et al. (1999) Three-dimensional structure of phosphoenolpyruvate carboxylase: a proposed mechanism for allosteric inhibition. Proc Natl Acad Sci USA 96, 823828.
  • Keseler, I.M., Collado-Vides, J., Santos-Zavaleta, A., Peralta-Gil, M., Gama-Castro, S., Muniz-Rascado, L., Bonavides-Martinez, C., Paley, S. et al. (2011) EcoCyc: a comprehensive database of Escherichia coli biology. Nucleic Acids Res 39, D583D590.
  • Lee, S.Y., Kim, J.M., Song, H., Lee, J.W., Kim, T.Y. and Jang, Y.S. (2008) From genome sequence to integrated bioprocess for succinic acid production by Mannheimia succiniciproducens. Appl Microbiol Biotechnol 79, 1122.
  • Lee, P.C., Lee, S.Y. and Chang, H.N. (2010) Kinetic study on succinic acid and acetic acid formation during continuous cultures of Anaerobiospirillum succiniciproducens grown on glycerol. Bioprocess Biosyst Eng 33, 465471.
  • Lennox, E.S. (1955) Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1, 190206.
  • Lin, H., Vadali, R.V., Bennett, G.N. and San, K.Y. (2004) Increasing the acetyl-CoA pool in the presence of overexpressed phosphoenolpyruvate carboxylase or pyruvate carboxylase enhances succinate production in Escherichia coli. Biotechnol Prog 20, 15991604.
  • Lin, H., Bennett, G.N. and San, K.Y. (2005a) Chemostat culture characterization of Escherichia coli mutant strains metabolically engineered for aerobic succinate production: a study of the modified metabolic network based on metabolite profile, enzyme activity, and gene expression profile. Metab Eng 7, 337352.
  • Lin, H., Bennett, G.N. and San, K.Y. (2005b) Genetic reconstruction of the aerobic central metabolism in Escherichia coli for the absolute aerobic production of succinate. Biotechnol Bioeng 89, 148156.
  • Lin, H., Bennett, G.N. and San, K.Y. (2005c) Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab Eng 7, 116127.
  • Lin, H., San, K.Y. and Bennett, G.N. (2005d) Effect of Sorghum vulgare phosphoenolpyruvate carboxylase and Lactococcus lactis pyruvate carboxylase coexpression on succinate production in mutant strains of Escherichia coli. Appl Microbiol Biotechnol 67, 515523.
  • Mazumdar, S., Clomburg, J.M. and Gonzalez, R. (2010) Escherichia coli strains engineered for homofermentative production of D-lactic acid from glycerol. Appl Environ Microbiol 76, 43274336.
  • Miki, K. and Lin, E.C. (1973) Enzyme complex which couples glycerol-3-phosphate dehydrogenation to fumarate reduction in Escherichia coli. J Bacteriol 114, 767771.
  • Miki, K. and Lin, E.C. (1975) Anaerobic energy-yielding reaction associated with transhydrogenation from glycerol 3-phosphate to fumarate by an Escherichia coli system. J Bacteriol 124, 12821287.
  • OECD (2010) OECD-FAO Agricultural Outlook 2010–2019. Paris: OECD Publishing. ISBN 978-92-64-08376-9
  • Pertierra, A.G. and Cooper, R.A. (1977) Pyruvate formation during the catabolism of simple hexose sugars by Escherichia coli: studies with pyruvate kinase-negative mutants. J Bacteriol 129, 12081214.
  • Ponce, E. (1999) Effect of growth rate reduction and genetic modifications on acetate accumulation and biomass yields in Escherichia coli. J Biosci Bioeng 87, 775780.
  • Sambrook, J., Fritsch, E.F. and Manniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  • Sanchez, A.M., Bennett, G.N. and San, K.Y. (2005) Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant. Biotechnol Prog 21, 358365.
  • Söllner, S. (2012) Thesis: Konstruktion von Escherichia coli Produktionsstämmen zur fermentativen Herstellung von Succinat aus Glycerin. Available at: http://elib.uni-stuttgart.de/opus/volltexte/2012/7251/ (Accessed on May 07, 2012).
  • Stols, L. and Donnelly, M.I. (1997) Production of succinic acid through overexpression of NAD(+)-dependent malic enzyme in an Escherichia coli mutant. Appl Environ Microbiol 63, 26952701.
  • Subedi, K.P., Kim, I., Kim, J., Min, B. and Park, C. (2008) Role of GldA in dihydroxyacetone and methylglyoxal metabolism of Escherichia coli K12. FEMS Microbiol Lett 279, 180187.
  • Terada, K., Murata, T. and Izui, K. (1991) Site-directed mutagenesis of phosphoenolpyruvate carboxylase from E. coli: the role of His579 in the catalytic and regulatory functions. J Biochem 109, 4954.
  • Thompson, J. and He, B.B. (2006) Characterization of crude glycerol from biodiesel production from multiple feedstocks. Appl Eng Agri 22, 261265.
  • Vielhauer, O., Zakhartsev, M., Horn, T., Takors, R. and Reuss, M. (2011) Simplified absolute metabolite quantification by gas chromatography-isotope dilution mass spectrometry on the basis of commercially available source material. J Chromatogr B Analyt Technol Biomed Life Sci 879, 38593870.
  • Wahl, S.A., Dauner, M. and Wiechert, W. (2004) New tools for mass isotopomer data evaluation in (13)C flux analysis: mass isotope correction, data consistency checking, and precursor relationships. Biotechnol Bioeng 85, 259268.
  • Warth, L., Haug, I. and Altenbuchner, J. (2011) Characterization of the tyrosine recombinase MrpA encoded by the Streptomyces coelicolor A3(2) plasmid SCP2*. Arch Microbiol 193, 187200.
  • Werpy, T. and Petersen, G. (2004) Top Value Added Chemicals from Biomass. Washington, DC: Department of Energy.
  • Yano, M. and Izui, K. (1997) The replacement of Lys620 by serine desensitizes Escherichia coli phosphoenolpyruvate carboxylase to the effects of the feedback inhibitors L-aspartate and L-malate. Eur J Biochem 247, 7481.
  • Yoshinaga, T. (1977) Structural specificity of the allosteric inhibitor of phosphoenolpyruvate carboxylase of Escherichia coli. J Biochem 81, 665671.
  • Zhang, X., Shanmugam, K.T. and Ingram, L.O. (2010) Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli. Appl Environ Microbiol 76, 23972401.