SEARCH

SEARCH BY CITATION

References

  • Blumenstein B.A. (2005) A comment on the utility of recursive partitioning. Journal of Clinical Oncology 23(19), 42544255.
  • Bonner G. (2001) Decision making for health care professionals: use of decision trees within the community mental health setting. Journal of Advanced Nursing 35(3), 349356.
  • Breiman L., Friedman J., Olshen R. & Stone C. (1984) Classification and Regression Trees. Wadsworth International Group, Belmont, CA.
  • Chang Y.J., Chen L.J., Chung K.P. & Lai M.S. (2012) Risk groups defined by recursive partitioning analysis of patients with colorectal adenocarcinoma treated with colorectal resection. BMC Medical Research Methodology 12, 2. doi:10.1186/1471-2288-12-2.
  • Crawley M.J. (2007) The R Book. John Wiley & Sons, Hoboken, NJ.
  • Crichton N.J., Hinde J.P. & Marchini J. (1997) Models for diagnosing chest pain: is CART helpful? Statistics in Medicine 16(7), 717727.
  • Dowding D. & Thompson C. (2004) Using decision trees to aid decision-making in nursing. Nursing Times 100(21), 3639.
  • Fan J., Xiao-Gang S., Levine R.A., Nunn M.E. & Leblanc M. (2006) Trees for correlated survival data by goodness of split, with applications to tooth prognosis. Journal of the American Statistical Association 101(475), 959967.
  • Fonarow G.C., Adams K.F. Jr, Abraham W.T., Yancy C.W. & Boscardin W.J. (2005) Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis. Journal of the American Medical Association 293(5), 572580.
  • Frisman L., Prendergast M., Lin H.J., Rodis E. & Greenwell L. (2008) Applying classification and regression tree analysis to identify prisoners with high HIV risk behaviors. Journal of Psychoactive Drugs 40(4), 447458.
  • Gardino S.L., Jeruss J.S. & Woodruff T.K. (2010) Using decision trees to enhance interdisciplinary team work: the case of oncofertility. Journal of Assisted Reproduction and Genetics 27(5), 227231.
  • Hess K.R., Abbruzzese M.C., Lenzi R., Raber M.N. & Abbruzzese J.L. (1999) Classification and regression tree analysis of 1000 consecutive patients with unknown primary carcinoma. Clinical Cancer Research 5(11), 34033410.
  • Hurwitz J., Nugent A., Halper F. & Kaufman M. (2013) Big Data for DUMMIES. John Wiley & Sons, Hoboken, NJ.
  • Karaolis M.A., Moutiris J.A., Hadjipanayi D. & Pattichis C.S. (2010) Assessment of the risk factors of coronary heart events based on data mining with decision trees. IEEE Transactions on Information Technology in Biomedicine 14(3), 559566.
  • Kuhn L., Worrall-Carter L., Ward J. & Page K. (2013) Factors associated with delayed treatment onset for acute myocardial infarction in Victorian emergency departments: a regression tree analysis. Australasian Emergency Nursing Journal. doi: 10.1016/j.aenj.2013.08.002.
  • Lamborn K.R., Chang S.M. & Prados M.D. (2004) Prognostic factors for survival of patients with glioblastoma: recursive partitioning analysis. Neurological Oncology 6(3), 227235.
  • Lange L.L. & Jacox A. (1993) Using large data bases in nursing and health policy research. Journal of Professional Nursing 9(4), 204211.
  • Leclerc B.S., Begin C., Cadieux E., Goulet L., Allaire J.F., Meloche J., Leduc N. & Kergoat M.J. (2009) A classification and regression tree for predicting recurrent falling among community-dwelling seniors using home-care services. Canadian Journal of Public Health. Revue Canadienne de Sante Publique 100(4), 263267.
  • Lemon S.C., Roy J., Clark M.A., Friedmann P.D. & Rakowski W. (2003) Classification and regression tree analysis in public health: methodological review and comparison with logistic regression. Annals of Behavioral Medicine 26(3), 172181.
  • Magee T., Lee S.M., Giuliano K.K. & Munro B. (2006) Generating new knowledge from existing data: the use of large data sets for nursing research. Nursing Research 55(2), S5056.
  • Mayer-Schönberger V. & Cukier K. (2013) Big Data: A Revolution That Will Transform How We Live, Work and Think. An Eamon Dolan Book, Houghton Mifflin Harcourt, Boston, MA.
  • Prasad A.M., Iverson L.R. & Liaw A. (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9, 181199.
  • Protopopoff N., Van Bortel W., Speybroeck N., Van Geertruyden J.P., Baza D., D'Alessandro U. & Coosemans M. (2009) Ranking malaria risk factors to guide malaria control efforts in African highlands. PLoS ONE 4(11), e8022. doi:10.1371/journal.pone.0008022.
  • Quintana J.M., Bilbao A., Escobar A., Azkarate J. & Goenaga J.I. (2009) Decision trees for indication of total hip replacement on patients with osteoarthritis. Rheumatology 48(11), 14021409.
  • R Development core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  • Rokach L. & Maimon O. (2007) Data Mining with Decision Trees: Theory and Applications. World Scientific, River Edge, NJ.
  • Sayyad M.G., Gopal G. & Shahani A.K. (2011) Classification and regression trees: a possible method for creating risk groups for progression to diabetic nephropathy. Journal of Applied Sciences 11(12), 20762083.
  • Speybroeck N. (2012) Classification and regression trees. International Journal of Public Health 57(1), 243246.
  • Strobl C., Malley J. & Tutz G. (2009) An introduction to recursive partitioning: rationale, application and characteristics of classification and regression trees, bagging and random forests. Psychological Methods 14(4), 323348.
  • Su X., Azuero A., Cho J., Kvale E., Meneses K.M. & McNees M.P. (2011) An introduction to tree-structured modeling with application to quality of life data. Nursing Research 60(4), 247255.
  • Williams G. (2011) Data Mining with Rattle and R: The Art of Excavating Data for Knowledge Discovery. Springer, New York.
  • Zhang H. & Singer B.H. (2010) Recursive Partitioning in the Health Sciences, 2nd edn. Springer, New York.