Cropland Riparian Buffers throughout Chesapeake Bay Watershed: Spatial Patterns and Effects on Nitrate Loads Delivered to Streams


  • Paper No. JAWRA-13-0083-P of the Journal of the American Water Resources Association (JAWRA).
  • Discussions are open until six months from print publication.


We used statistical models to provide the first empirical estimates of riparian buffer effects on the cropland nitrate load to streams throughout the Chesapeake Bay watershed. For each of 1,964 subbasins, we quantified the 1990 prevalence of cropland and riparian buffers. Cropland was considered buffered if the topographic flow path connecting it to a stream traversed a streamside forest or wetland. We applied a model that predicts stream nitrate concentration based on physiographic province and the watershed proportions of unbuffered and buffered cropland. We used another model to predict annual streamflow based on precipitation and temperature, and then multiplied the predicted flows and concentrations to estimate 1990 annual nitrate loads. Across the entire Chesapeake watershed, croplands released 92.3 Gg of nitrate nitrogen, but 19.8 Gg of that was removed by riparian buffers. At most, 29.4 Gg more might have been removed if buffer gaps were restored so that all cropland was buffered. The other 43.1 Gg of cropland load cannot be addressed with riparian buffers. The Coastal Plain physiographic province provided 52% of the existing buffer reduction of Bay-wide nitrate loads and 36% of potential additional removal from buffer restoration in cropland buffer gaps. Existing and restorable nitrate removal in buffers were lower in the other three major provinces because of less cropland, lower buffer prevalence, and lower average buffer nitrate removal efficiency.