SEARCH

SEARCH BY CITATION

Keywords:

  • Africa;
  • continental-scale monitoring;
  • deforestation;
  • dry forests;
  • land-cover change;
  • Landsat;
  • uncertainty;
  • woodlands

Abstract

Aim

This study provides regional estimates of forest cover in dry African ecoregions and the changes in forest cover that occurred there between 1990 and 2000, using a systematic sample of medium-resolution satellite imagery which was processed consistently across the continent.

Location

The study area corresponds to the dry forests and woodlands of Africa between the humid forests and the semi-arid regions. This area covers the Sudanian and Zambezian ecoregions.

Methods

A systematic sample of 1600 Landsat satellite imagery subsets, each 20 km × 20 km in size, were analysed for two reference years: 1990 and 2000. At each sample site and for both years, dense tree cover, open tree cover, other wooded land and other vegetation cover were identified from the analysis of satellite imagery, which comprised multidate segmentation and automatic classification steps followed by visual control by national forestry experts.

Results

Land cover and land-cover changes were estimated at continental and ecoregion scales and compared with existing pan-continental, regional and local studies. The overall accuracy of our land-cover maps was estimated at 87%. Between 1990 and 2000, 3.3 million hectares (Mha) of dense tree cover, 5.8 Mha of open tree cover and 8.9 Mha of other wooded land were lost, with a further 3.9 Mha degraded from dense to open tree cover. These results are substantially lower than the 34 Mha of forest loss reported in the FAO's 2010 Global Forest Resources Assessment for the same period and area.

Main conclusions

Our method generates the first consistent and robust estimates of forest cover and change in dry Africa with known statistical precision at continental and ecoregion scales. These results reduce the uncertainty regarding vegetation cover and its dynamics in these previously poorly studied ecosystems and provide crucial information for both science and environmental policies.