• 1
    Zhong H, De Marzo AM, Laughner E, et al. Overexpression of hypoxia-inducible factor 1 alpha in common human cancers and their metastases. Cancer Res. 1999; 59: 58305.
  • 2
    Cangul H, Salnikow K, Yee HZ, et al. Enhanced overexpression of an HIF-1/hypoxia-related protein in cancer cells. Environ Health Perspect. 2002; 110: 7838.
  • 3
    Wenger RH. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J. 2002; 16: 115162.
  • 4
    Mathieu J, Zhang Z, Zhou W, et al. HIF induces human embryonic stem cell markers in cancer cells. Cancer Res. 2011; 71: 464052.
  • 5
    Jubb AM, Buffa FM, Harris AL. Assessment of tumour hypoxia for prediction of response to therapy and cancer prognosis. J Cell Mol Med. 2010; 14: 1829.
  • 6
    Giuntoli S, Tanturli M, Di Gesualdo F, et al. Glucose availability in hypoxia regulates the selection of chronic myeloid leukemia progenitor subsets with different resistance to imatinib-mesylate. Haematologica. 2011; 96: 20412.
  • 7
    Blazek ER, Foutch JL, Maki G. Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133+ sector is enlarged by hypoxia. Int J Radiat Oncol Biol Phys. 2007; 67: 15.
  • 8
    Dai Y, Bae K, Siemann DW. Impact of hypoxia on the metastatic potential of human prostate cancer cells. Int J Radiat Oncol Biol Phys. 2011; 81: 5218.
  • 9
    Milosevic M, Warde P, Menard C, et al. Tumor hypoxia predicts biochemical failure following radiotherapy for clinically localized prostate cancer. Clin Cancer Res. 2012; 18: 210814.
  • 10
    Bos R, van der Groep P, Greijer AE, et al. Levels of hypoxia-inducible factor-1 alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer. 2003; 97: 157381.
  • 11
    Schwartz DL, Bankson JA, Lemos R Jr, et al. Radiosensitization and stromal imaging response correlates for the HIF-1 inhibitor PX-478 given with or without chemotherapy in pancreatic cancer. Mol Cancer Ther. 2010; 9: 205767.
  • 12
    Kasuya K, Tsuchida A, Nagakawa Y, et al. Hypoxia-inducible factor-1 alpha expression and gemcitabine chemotherapy for pancreatic cancer. Oncol Rep. 2011; 26: 1399406.
  • 13
    Johansson A, Rudolfsson SH, Kilter S, et al. Targeting castration-induced tumour hypoxia enhances the acute effects of castration therapy in a rat prostate cancer model. BJU Int. 2011; 107: 181824.
  • 14
    Ma Y, Liang D, Liu J, et al. Prostate cancer cell lines under hypoxia exhibit greater stem-like properties. PLoS ONE. 2011; 6: e29170.
  • 15
    Xing F, Okuda H, Watabe M, et al. Hypoxia-induced Jagged2 promotes breast cancer metastasis and self-renewal of cancer stem-like cells. Oncogene. 2011; 30: 407586.
  • 16
    Quail DF, Taylor MJ, Walsh LA, et al. Low oxygen levels induce the expression of the embryonic morphogen Nodal. Mol Biol Cell. 2011; 22: 480921.
  • 17
    Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003; 3: 72132.
  • 18
    Wiesener MS, Jurgensen JS, Rosenberger C, et al. Widespread hypoxia-inducible expression of HIF-2 alpha in distinct cell populations of different organs. FASEB J. 2003; 17: 2713.
  • 19
    Kewley RJ, Whitelaw ML, Chapman-Smith A. The mammalian basic helix-loop-helix/PAS family of transcriptional regulators. Int J Biochem Cell Biol. 2004; 36: 189204.
  • 20
    Partch CL, Gardner KH. Coactivator recruitment: a new role for PAS domains in transcriptional regulation by the bHLH-PAS family. J Cell Physiol. 2010; 223: 5537.
  • 21
    Fong GH, Takeda K. Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ. 2008; 15: 63541.
  • 22
    Kaelin WG Jr. The von Hippel-Lindau tumor suppressor gene and kidney cancer. Clin Cancer Res. 2004; 10: 6290S5S.
  • 23
    D'Alterio C, Barbieri A, Portella L, et al. Inhibition of stromal CXCR4 impairs development of lung metastases. Cancer Immunol Immunother. 2012; 61: 171320.
  • 24
    Partch CL, Gardner KH. Coactivators necessary for transcriptional output of the hypoxia inducible factor, HIF, are directly recruited by ARNT PAS-B. Proc Natl Acad Sci USA. 2011; 108: 773944.
  • 25
    Stoeltzing O, Liu W, Reinmuth N, et al. Regulation of hypoxia-inducible factor-1 alpha, vascular endothelial growth factor, and angiogenesis by an insulin-like growth factor-I receptor autocrine loop in human pancreatic cancer. Am J Pathol. 2003; 163: 100111.
  • 26
    Zhang M, Ma Q, Hu H, et al. Stem cell factor/c-kit signalling enhances invasion of pancreatic cancer cells via HIF-1 alpha under normoxic condition. Cancer Lett. 2011; 303: 10817.
  • 27
    Nilsson CL, Dillon R, Devakumar A, et al. Quantitative phosphoproteomic analysis of the STAT3/IL-6/HIF1alpha signalling network: an initial study in GSC11 glioblastoma stem cells. J Proteome Res. 2010; 9: 43043.
  • 28
    Zhong H, Chiles K, Feldser D, et al. Modulation of hypoxia-inducible factor 1 alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 2000; 60: 15415.
  • 29
    Tonra JR, Corcoran E, Deevi DS, et al. Prioritization of EGFR/IGF-IR/VEGFR2 combination targeted therapies utilizing cancer models. Anticancer Res. 2009; 29: 19992007.
  • 30
    Azzariti A, Porcelli L, Gatti G, et al. Synergic antiproliferative and antiangiogenic effects of EGFR and mTor inhibitors on pancreatic cancer cells. Biochem Pharmacol. 2008; 75: 103544.
  • 31
    Peng XH, Karna P, Cao Z, et al. Cross-talk between epidermal growth factor receptor and hypoxia-inducible factor-1alpha signal pathways increases resistance to apoptosis by up-regulating survivin gene expression. J Biol Chem. 2006; 281: 2590314.
  • 32
    Phillips RJ, Mestas J, Gharaee-Kermani M, et al. Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signalling pathway and activation of hypoxia inducible factor-1 alpha. J Biol Chem. 2005; 280: 2247381.
  • 33
    Xu Q, Briggs J, Park S, et al. Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signalling pathways. Oncogene. 2005; 24: 555260.
  • 34
    Schoolmeesters A, Brown DD, Fedorov Y. Kinome-wide functional genomics screen reveals a novel mechanism of TNF alpha-induced nuclear accumulation of the HIF-1 alpha transcription factor in cancer cells. PLoS ONE. 2012; 7: e31270.
  • 35
    Chae KS, Kang MJ, Lee JH, et al. Opposite functions of HIF-alpha isoforms in VEGF induction by TGF-beta1 under non-hypoxic conditions. Oncogene. 2011; 30: 121328.
  • 36
    Harada H, Itasaka S, Kizaka-Kondoh S, et al. The Akt/mTOR pathway assures the synthesis of HIF-1 alpha protein in a glucose- and reoxygenation-dependent manner in irradiated tumors. J Biol Chem. 2009; 284: 533242.
  • 37
    Fukuda R, Kelly B, Semenza GL. Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. Cancer Res. 2003; 63: 23304.
  • 38
    Laughner E, Taghavi P, Chiles K, et al. HER2 (neu) signalling increases the rate of hypoxia-inducible factor 1 alpha (HIF-1 alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol. 2001; 21: 39954004.
  • 39
    Qayum N, Muschel RJ, Im JH, et al. Tumor vascular changes mediated by inhibition of oncogenic signalling. Cancer Res. 2009; 69: 634754.
  • 40
    Fukuda R, Hirota K, Fan F, et al. Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signalling in colon cancer cells. J Biol Chem. 2002; 277: 3820511.
  • 41
    Zundel W, Schindler C, Haas-Kogan D, et al. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev. 2000; 14: 3916.
  • 42
    Hudson CC, Liu M, Chiang GG, et al. Regulation of hypoxia-inducible factor 1 alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol. 2002; 22: 700414.
  • 43
    Hu HT, Ma QY, Zhang D, et al. HIF-1 alpha links beta-adrenoceptor agonists and pancreatic cancer cells under normoxic condition. Acta Pharmacol Sin. 2010; 31: 10210.
  • 44
    Moeller BJ, Cao Y, Li CY, et al. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell. 2004; 5: 42941.
  • 45
    Mimeault M, Hauke R, Mehta PP, et al. Recent advances on cancer stem/progenitor cell research: therapeutic implications for overcoming resistance to the most aggressive cancers. J Cell Mol Med. 2007; 11: 9811011.
  • 46
    Hashimoto O, Shimizu K, Semba S, et al. Hypoxia induces tumor aggressiveness and the expansion of CD133-positive cells in a hypoxia-inducible factor-1 alpha-dependent manner in pancreatic cancer cells. Pathobiology. 2011; 78: 18192.
  • 47
    Mimeault M, Batra SK. New advances on critical implications of tumor- and metastasis-initiating cells in cancer progression, treatment resistance and disease recurrence. Histol Histopathol. 2010; 25: 105773.
  • 48
    Anderson KM, Guinan P, Rubenstein M. The effect of normoxia and hypoxia on a prostate (PC-3) CD44/CD41 cell side fraction. Anticancer Res. 2011; 31: 48794.
  • 49
    Mimeault M, Batra SK. New promising drug targets in cancer- and metastasis-initiating cells. Drug Discov Today. 2010; 15: 35464.
  • 50
    Oliveira-Costa JP, Zanetti JS, Silveira GG, et al. Differential expression of HIF-1 alpha in CD44+CD24−/low breast ductal carcinomas. Diagn Pathol. 2011; 6: 73.
  • 51
    Rausch V, Liu L, Apel A, et al. Autophagy mediates survival of pancreatic tumour-initiating cells in a hypoxic microenvironment. J Pathol. 2012; 227: 32535.
  • 52
    Mimeault M, Batra SK. Novel therapies against aggressive and recurrent epithelial cancers by molecular targeting tumor- and metastasis-initiating cells and their progenies. Anticancer Agents Med Chem. 2010; 10: 13751.
  • 53
    Mimeault M, Johansson SL, Batra SK. Pathobiological implications of the expression of EGFR, pAkt, NF-kB and MIC-1 in prostate cancer stem cells and their progenies. PLoS ONE. 2012; 7: e31919.
  • 54
    Guan Y, Reddy KR, Zhu Q, et al. G-rich oligonucleotides inhibit HIF-1 alpha and HIF-2 alpha and block tumor growth. Mol Ther. 2010; 18: 18897.
  • 55
    Zhang H, Li H, Xi HS, et al. HIF1 alpha is required for survival maintenance of chronic myeloid leukemia stem cells. Blood. 2012; 119: 2595607.
  • 56
    Takeuchi M, Ashihara E, Yamazaki Y, et al. Rakicidin A effectively induces apoptosis in hypoxia adapted Bcr-Abl positive leukemic cells. Cancer Sci. 2011; 102: 5916.
  • 57
    Huang Y, Yu J, Yan C, et al. Effect of small interfering RNA targeting hypoxia-inducible factor-1 alpha on radiosensitivity of PC3 cell line. Urology. 2012; 79: 744.e1724.
  • 58
    Lee K, Qian DZ, Rey S, et al. Anthracycline chemotherapy inhibits HIF-1 transcriptional activity and tumor-induced mobilization of circulating angiogenic cells. Proc Natl Acad Sci USA. 2009; 106: 23538.
  • 59
    Manohar SM, Padgaonkar AA, Jalota-Badhwar A, et al. Cyclin-dependent kinase inhibitor, P276–00, inhibits HIF-1alpha and induces G2/M arrest under hypoxia in prostate cancer cells. Prostate Cancer Prostatic Dis. 2012; 15: 1527.
  • 60
    Baker LC, Boult JK, Walker-Samuel S, et al. The HIF-pathway inhibitor NSC-134754 induces metabolic changes and anti-tumour activity while maintaining vascular function. Br J Cancer. 2012; 106: 163847.
  • 61
    Manohar SM, Padgaonkar AA, Jalota-Badhwar A, et al. A novel inhibitor of hypoxia-inducible factor-1 alpha P3155 also modulates PI3K pathway and inhibits growth of prostate cancer cells. BMC Cancer. 2011; 11: 338.
  • 62
    Mizuno T, Nagao M, Yamada Y, et al. Small interfering RNA expression vector targeting hypoxia-inducible factor 1 alpha inhibits tumor growth in hepatobiliary and pancreatic cancers. Cancer Gene Ther. 2006; 13: 13140.
  • 63
    Kawakami K, Hattori M, Inoue T, et al. A novel fusicoccin derivative preferentially targets hypoxic tumor cells and inhibits tumor growth in xenografts. Anticancer Agents Med Chem. 2012; 12: 791800.
  • 64
    Liu Q, Sun JD, Wang J, et al. , et al. TH-302, a hypoxia-activated prodrug with broad in vivo preclinical combination therapy efficacy: optimization of dosing regimens and schedules. Cancer Chemother Pharmacol. 2012; 69: 148798.
  • 65
    Boreddy SR, Sahu RP, Srivastava SK. Benzyl isothiocyanate suppresses pancreatic tumor angiogenesis and invasion by inhibiting HIF-alpha/VEGF/Rho-GTPases: pivotal role of STAT-3. PLoS ONE. 2011; 6: e25799.
  • 66
    Staab A, Fleischer M, Loeffler J, et al. Small interfering RNA targeting HIF-1 alpha reduces hypoxia-dependent transcription and radiosensitizes hypoxic HT 1080 human fibrosarcoma cells in vitro. Strahlenther Onkol. 2011; 187: 2529.
  • 67
    Mimeault M, Batra SK. Recent advances on skin-resident stem/progenitor cell functions in skin regeneration, aging and cancers and novel anti-aging and cancer therapies. J Cell Mol Med. 2010; 14: 11634.
  • 68
    Jamieson CH, Ailles LE, Dylla SJ, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004; 351: 65767.
  • 69
    Hu Y, Swerdlow S, Duffy TM, et al. Targeting multiple kinase pathways in leukemic progenitors and stem cells is essential for improved treatment of Ph+ leukemia in mice. Proc Natl Acad Sci USA. 2006; 103: 168705.
  • 70
    Melo JV, Barnes DJ. Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer. 2007; 7: 44153.
  • 71
    Miyamoto T, Weissman IL, Akashi K. AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc Natl Acad Sci USA. 2000; 97: 75216.
  • 72
    Colmone A, Amorim M, Pontier AL, et al. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science. 2008; 322: 18615.
  • 73
    Hwang-Verslues WW, Kuo WH, Chang PH, et al. Multiple lineages of human breast cancer stem/progenitor cells identified by profiling with stem cell markers. PLoS ONE. 2009; 4: e8377.
  • 74
    Conley SJ, Gheordunescu E, Kakarala P, et al. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci USA. 2012; 109: 27849.
  • 75
    Milane L, Duan Z, Amiji M. Therapeutic efficacy and safety of paclitaxel/lonidamine loaded EGFR-targeted nanoparticles for the treatment of multi-drug resistant cancer. PLoS ONE. 2011; 6: e24075.
  • 76
    Al-Hajj M, Wicha MS, Ito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003; 100: 39838.
  • 77
    Wang Z, Shi Q, Wang Z, et al. Clinicopathologic correlation of cancer stem cell markers CD44, CD24, VEGF and HIF-1 alpha in ductal carcinoma in situ and invasive ductal carcinoma of breast: an immunohistochemistry-based pilot study. Pathol Res Pract. 2011; 207: 50513.
  • 78
    Jung JW, Park SB, Lee SJ, et al. Metformin represses self-renewal of the human breast carcinoma stem cells via inhibition of estrogen receptor-mediated OCT4 expression. PLoS ONE. 2011; 6: e28068.
  • 79
    Louie E, Nik S, Chen JS, et al. Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Res. 2010; 12: R94.
  • 80
    Krohn A, Song YH, Muehlberg F, et al. CXCR4 receptor positive spheroid forming cells are responsible for tumor invasion in vitro. Cancer Lett. 2009; 280: 6571.
  • 81
    Mimeault M, Johansson SL, Henichart JP, et al. Cytotoxic effects induced by docetaxel, gefitinib, and cyclopamine on side population and non-side population cell fractions from human invasive prostate cancer cells. Mol Cancer Ther. 2010; 9: 61730.
  • 82
    Mimeault M, Batra SK. Complex oncogenic signalling networks regulate brain tumor-initiating cells and their progenies: pivotal roles of wild-type EGFR, EGFRvIII mutant and hedgehog cascades and novel multitargeted therapies. Brain Pathol. 2011; 21: 479500.
  • 83
    Mimeault M, Batra SK. Novel biomarkers and therapeutic targets for optimizing the therapeutic management of melanomas. World J Clin Oncol. 2012; 3: 3242.
  • 84
    Frankfurt O, Tallman MS. Growth factors in leukemia. J Natl Compr Canc Netw. 2007; 5: 20315.
  • 85
    Zhao C, Chen A, Jamieson CH, et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature. 2009; 458: 7769.
  • 86
    Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature. 2003; 423: 25560.
  • 87
    Mimeault M, Hauke R, Batra SK. Stem cells – A revolution in therapeutics–Recent advances on the stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther. 2007; 82: 25264.
  • 88
    Han M, Wang Y, Liu M, et al. MiR-21 regulates epithelial-mesenchymal transition phenotype and hypoxia-inducible factor-1 alpha expression in third-sphere forming breast cancer stem cell-like cells. Cancer Sci. 2012; 103: 105864.
  • 89
    Barbieri A, Palma G, Rosati A, et al. Role of endothelial nitric oxide synthase (eNOS) in chronic stress-promoted tumour growth. J Cell Mol Med. 2012; 16: 9206.
  • 90
    Takeuchi M, Kimura S, Kuroda J, et al. Glyoxalase-I is a novel target against Bcr-Abl+ leukemic cells acquiring stem-like characteristics in a hypoxic environment. Cell Death Differ. 2010; 17: 121120.
  • 91
    Druker BJ, Sawyers CL, Kantarjian H, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 2001; 344: 103842.
  • 92
    Graham SM, Jorgensen HG, Allan E, et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood. 2002; 99: 31925.
  • 93
    Hamilton A, Helgason GV, Schemionek M, et al. Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood. 2012; 119: 150110.
  • 94
    Tanturli M, Giuntoli S, Barbetti V, et al. Hypoxia selects bortezomib-resistant stem cells of chronic myeloid leukemia. PLoS ONE. 2011; 6: e17008.
  • 95
    Ibanez E, Agliano A, Prior C, et al. The quinoline imidoselenocarbamate EI201 blocks AKT/mTOR pathway and targets cancer stem cells leading to a strong antitumor activity. Curr Med Chem. 2012; 19: 303143.
  • 96
    Vazquez-Martin A, Oliveras-Ferraros C, Del Barco S, et al. The anti-diabetic drug metformin suppresses self-renewal and proliferation of trastuzumab-resistant tumor-initiating breast cancer stem cells. Breast Cancer Res Treat. 2011; 126: 35564.
  • 97
    Mimeault M, Batra SK. Frequent deregulations in the hedgehog signalling network and cross-talks with the epidermal growth factor receptor pathway involved in cancer progression and targeted therapies. Pharmacol Rev. 2010; 62: 497524.
  • 98
    Annabi B, Rojas-Sutterlin S, Laflamme C, et al. Tumor environment dictates medulloblastoma cancer stem cell expression and invasive phenotype. Mol Cancer Res. 2008; 6: 90716.
  • 99
    Yang MH, Wu MZ, Chiou SH, et al. Direct regulation of TWIST by HIF-1 alpha promotes metastasis. Nat Cell Biol. 2008; 10: 295305.
  • 100
    Jing SW, Wang YD, Chen LQ, et al. Hypoxia suppresses E-cadherin and enhances matrix metalloproteinase-2 expression favoring esophageal carcinoma migration and invasion via hypoxia inducible factor-1 alpha activation. Dis Esophagus. 2012; in press: doi: 10.1111/j.1442-2050.2011.01321.x.
  • 101
    Gravdal K, Halvorsen OJ, Haukaas SA, et al. Proliferation of immature tumor vessels is a novel marker of clinical progression in prostate cancer. Cancer Res. 2009; 69: 470815.
  • 102
    Zhang L, Hill RP. Hypoxia enhances metastatic efficiency in HT1080 fibrosarcoma cells by increasing cell survival in lungs, not cell adhesion and invasion. Cancer Res. 2007; 67: 778997.
  • 103
    Karlsson H, Fryknas M, Larsson R, et al. Loss of cancer drug activity in colon cancer HCT-116 cells during spheroid formation in a new 3-D spheroid cell culture system. Exp Cell Res. 2012; 318: 157785.
  • 104
    Saigusa S, Tanaka K, Toiyama Y, et al. Clinical significance of CD133 and hypoxia inducible factor-1 alpha gene expression in rectal cancer after preoperative chemoradiotherapy. Clin Oncol. 2011; 23: 32332.
  • 105
    Das B, Tsuchida R, Malkin D, et al. Hypoxia enhances tumor stemness by increasing the invasive and tumorigenic side population fraction. Stem Cells. 2008; 26: 181830.
  • 106
    Holmquist-Mengelbier L, Fredlund E, Lofstedt T, et al. Recruitment of HIF-1 alpha and HIF-2 alpha to common target genes is differentially regulated in neuroblastoma: HIF-2 alpha promotes an aggressive phenotype. Cancer Cell. 2006; 10: 41323.
  • 107
    Chen B, Yuping S, Ni J. Rapamycin decreases survivin expression to induce NSCLC cell apoptosis under hypoxia through inhibiting HIF-1 alpha induction. Mol Biol Rep. 2012; 39: 18591.
  • 108
    Heddleston JM, Wu Q, Rivera M, et al. Hypoxia-induced mixed-lineage leukemia 1 regulates glioma stem cell tumorigenic potential. Cell Death Differ. 2012; 19: 42839.
  • 109
    Krieg AJ, Rankin EB, Chan D, et al. Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 alpha enhances hypoxic gene expression and tumor growth. Mol Cell Biol. 2010; 30: 34453.
  • 110
    Elvidge GP, Glenny L, Appelhoff RJ, et al. Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1 alpha, HIF-2 alpha, and other pathways. J Biol Chem. 2006; 281: 1521526.
  • 111
    Chen N, Chen X, Huang R, et al. BCL-xL is a target gene regulated by hypoxia-inducible factor-1 alpha. J Biol Chem. 2009; 284: 1000412.
  • 112
    Kumar SM, Liu S, Lu H, et al. Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation. Oncogene. 2012; 31: 4898911.
  • 113
    Chiche J, Brahimi-Horn MC, Pouyssegur J. Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med. 2010; 14: 77194.
  • 114
    Svastova E, Witarski W, Csaderova L, et al. Carbonic anhydrase IX interacts with bicarbonate transporters in lamellipodia and increases cell migration via its catalytic domain. J Biol Chem. 2012; 287: 3392402.
  • 115
    Lou Y, McDonald PC, Oloumi A, et al. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Res. 2011; 71: 336476.
  • 116
    Ullah MS, Davies AJ, Halestrap AP. The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1 alpha-dependent mechanism. J Biol Chem. 2006; 281: 90307.
  • 117
    Shinojima T, Oya M, Takayanagi A, et al. Renal cancer cells lacking hypoxia inducible factor (HIF)-1 alpha expression maintain vascular endothelial growth factor expression through HIF-2 alpha. Carcinogenesis. 2007; 28: 52936.
  • 118
    Shibaji T, Nagao M, Ikeda N, et al. Prognostic significance of HIF-1 alpha overexpression in human pancreatic cancer. Anticancer Res. 2003; 23: 47217.
  • 119
    Fang J, Ding M, Yang L, et al. PI3K/PTEN/AKT signalling regulates prostate tumor angiogenesis. Cell Signal. 2007; 19: 248797.
  • 120
    Gordan JD, Bertout JA, Hu CJ, et al. HIF-2 alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell. 2007; 11: 33547.
  • 121
    Covello KL, Kehler J, Yu H, et al. HIF-2 alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev. 2006; 20: 55770.
  • 122
    Carrero P, Okamoto K, Coumailleau P, et al. Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1 alpha. Mol Cell Biol. 2000; 20: 40215.
  • 123
    Ruas JL, Berchner-Pfannschmidt U, Malik S, et al. Complex regulation of the transactivation function of hypoxia-inducible factor-1 alpha by direct interaction with two distinct domains of the CREB-binding protein/p300. J Biol Chem. 2010; 285: 26019.
  • 124
    Hasmim M, Noman MZ, Lauriol J, et al. Hypoxia-dependent inhibition of tumor cell susceptibility to CTL-mediated lysis involves NANOG induction in target cells. J Immunol. 2011; 187: 40319.
  • 125
    Wong CC, Gilkes DM, Zhang H, et al. Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc Natl Acad Sci USA. 2011; 108: 1636974.
  • 126
    Heddleston JM, Li Z, McLendon RE, et al. The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle. 2009; 8: 327484.
  • 127
    Li Z, Bao S, Wu Q, et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell. 2009; 15: 50113.
  • 128
    Gibbs BF, Yasinska IM, Oniku AE, et al. Effects of stem cell factor on hypoxia-inducible factor 1 alpha accumulation in human acute myeloid leukaemia and LAD2 mast cells. PLoS ONE. 2011; 6: e22502.
  • 129
    Rizo A, Vellenga E, de Haan G, et al. Signalling pathways in self-renewing hematopoietic and leukemic stem cells: do all stem cells need a niche? Hum Mol Genet. 2006; 15: R2109.
  • 130
    Nagao R, Ashihara E, Kimura S, et al. Growth inhibition of imatinib-resistant CML cells with the T315I mutation and hypoxia-adaptation by AV65–a novel Wnt/beta-catenin signalling inhibitor. Cancer Lett. 2011; 312: 91100.
  • 131
    Sengupta A, Banerjee D, Chandra S, et al. B Deregulation and cross talk among Sonic hedgehog, Wnt, Hox and Notch signalling in chronic myeloid leukemia progression. Leukemia. 2007; 21: 94955.
  • 132
    Talpaz M, Shah NP, Kantarjian H, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med. 2006; 354: 253141.
  • 133
    Giuffrida D, Rogers IM. Targeting cancer stem cell lines as a new treatment of human cancer. Recent Pat Anticancer Drug Discov. 2010; 5: 20518.
  • 134
    Wang Y, Liu Y, Malek SN, et al. Targeting HIF1 alpha eliminates cancer stem cells in hematological malignancies. Cell Stem Cell. 2011; 8: 399411.
  • 135
    Calabretta B, Salomoni P. Suppression of autophagy by BCR/ABL. Front Biosci. 2012; 4: 45360.
  • 136
    Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005; 352: 98796.
  • 137
    Furnari FB, Fenton T, Bachoo RM, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007; 21: 2683710.
  • 138
    Karpel-Massler G, Schmidt U, Unterberg A, et al. Therapeutic inhibition of the epidermal growth factor receptor in high-grade gliomas: where do we stand? Mol Cancer Res. 2009; 7: 100012.
  • 139
    Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006; 444: 75660.
  • 140
    Eramo A, Ricci-Vitiani L, Zeuner A, et al. Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ. 2006; 13: 123841.
  • 141
    Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007; 11: 6982.
  • 142
    Li A, Walling J, Ahn S, et al. Unsupervised analysis of transcriptomic profiles reveals six glioma subtypes. Cancer Res. 2009; 69: 20919.
  • 143
    Verhaak RG, Hoadley KA, Purdom E, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010; 17: 98110.
  • 144
    Brennan C, Momota H, Hambardzumyan D, et al. Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS ONE. 2009; 4: e7752.
  • 145
    Platet N, Liu SY, Atifi ME, et al. Influence of oxygen tension on CD133 phenotype in human glioma cell cultures. Cancer Lett. 2007; 258: 28690.
  • 146
    Hjelmeland AB, Wu Q, Heddleston JM, et al. Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ. 2011; 18: 82940.
  • 147
    Seidel S, Garvalov BK, Wirta V, et al. A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha. Brain. 2010; 133: 98395.
  • 148
    Soeda A, Park M, Lee D, et al. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1 alpha. Oncogene. 2009; 28: 394959.
  • 149
    Bao S, Wu Q, Sathornsumetee S, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 2006; 66: 78438.
  • 150
    Wang J, Wang H, Li Z, et al. c-Myc is required for maintenance of glioma cancer stem cells. PLoS ONE. 2008; 3: e3769.
  • 151
    Bao S, Wu Q, Li Z, et al. Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Res. 2008; 68: 60438.
  • 152
    Andersson U, Schwartzbaum J, Wiklund F, et al. A comprehensive study of the association between the EGFR and ERBB2 genes and glioma risk. Acta Oncol. 2010; 49: 76775.
  • 153
    Cloughesy TF, Yoshimoto K, Nghiemphu P, et al. Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med. 2008; 5: e8.
  • 154
    Galavotti S, Bartesaghi S, Faccenda D, et al. The autophagy-associated factors DRAM1 and p62 regulate cell migration and invasion in glioblastoma stem cells. Oncogene. 2012; in press: doi: 10.1038/onc.2012.111.
  • 155
    Yin S, Kaluz S, Devi NS, et al. Arylsulfonamide KCN1 inhibits in vivo glioma growth and interferes with HIF signalling by disrupting HIF-1 alpha interaction with co-factors p300/CBP. Clin Cancer Res. 2012; in press: doi: 10.1158/1078-0432.CCR-12-0861.
  • 156
    Sotelo J, Briceno E, Lopez-Gonzalez MA, et al. Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. Ann Intern Med. 2006; 144: 33743.
  • 157
    Tsao H, Atkins MB, Sober AJ, et al. Management of cutaneous melanoma. N Engl J Med. 2004; 351: 9981012.
  • 158
    Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy. Nature. 2007; 445: 8517.
  • 159
    Garbe C, Leiter U. Melanoma epidemiology and trends. Clin Dermatol. 2009; 27: 39.
  • 160
    Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011; 61: 6990.
  • 161
    Fang D, Nguyen TK, Leishear K, et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 2005; 65: 932837.
  • 162
    Monzani E, Facchetti F, Galmozzi E, et al. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer. 2007; 43: 93546.
  • 163
    Schatton T, Murphy GF, Frank NY, et al. Identification of cells initiating human melanomas. Nature. 2008; 451: 3459.
  • 164
    Boiko AD, Razorenova OV, van de Rijn M, et al. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature. 2010; 466: 1337.
  • 165
    Strizzi L, Abbott DE, Salomon DS, et al. Potential for cripto-1 in defining stem cell-like characteristics in human malignant melanoma. Cell Cycle. 2008; 7: 19315.
  • 166
    Giatromanolaki A, Sivridis E, Kouskoukis C, et al. Hypoxia-inducible factors 1 alpha and 2 alpha are related to vascular endothelial growth factor expression and a poorer prognosis in nodular malignant melanomas of the skin. Melanoma Res. 2003; 13: 493501.
  • 167
    Valencak J, Kittler H, Schmid K, et al. Prognostic relevance of hypoxia inducible factor-1 alpha expression in patients with melanoma. Clin Exp Dermatol. 2009; 34: e9624.
  • 168
    Konstantina A, Lazaris AC, Ioannidis E, et al. Immunohistochemical expression of VEGF, HIF1-a, and PlGF in malignant melanomas and dysplastic nevi. Melanoma Res. 2011; 21: 38994.
  • 169
    Sivridis E, Koukourakis MI, Mendrinos SE, et al. Beclin-1 and LC3A expression in cutaneous malignant melanomas: a biphasic survival pattern for beclin-1. Melanoma Res. 2011; 21: 18895.
  • 170
    Strizzi L, Bianco C, Normanno N, et al. Cripto-1: a multifunctional modulator during embryogenesis and oncogenesis. Oncogene. 2005; 24: 573141.
  • 171
    Rofstad EK, Danielsen T. Hypoxia-induced metastasis of human melanoma cells: involvement of vascular endothelial growth factor-mediated angiogenesis. Br J Cancer. 1999; 80: 1697707.
  • 172
    Braig S, Wallner S, Junglas B, et al. CTGF is overexpressed in malignant melanoma and promotes cell invasion and migration. Br J Cancer. 2011; 105: 2318.
  • 173
    Omholt K, Platz A, Kanter L, et al. NRAS and BRAF mutations arise early during melanoma pathogenesis and are preserved throughout tumor progression. Clin Cancer Res. 2003; 9: 64838.
  • 174
    Bertolotto C, Lesueur F, Giuliano S, et al. A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature. 2011; 480: 948.
  • 175
    Busca R, Berra E, Gaggioli C, et al. Hypoxia-inducible factor 1{alpha} is a new target of microphthalmia-associated transcription factor (MITF) in melanoma cells. J Cell Biol. 2005; 170: 4959.
  • 176
    Spinella F, Rosano L, Del Duca M, et al. Endothelin-1 inhibits prolyl hydroxylase domain 2 to activate hypoxia-inducible factor-1 alpha in melanoma cells. PLoS ONE. 2010; 5: e11241.
  • 177
    Kumar SM, Yu H, Edwards R, et al. Mutant V600E BRAF increases hypoxia inducible factor-1 alpha expression in melanoma. Cancer Res. 2007; 67: 317784.
  • 178
    Mills CN, Joshi SS, Niles RM. Expression and function of hypoxia inducible factor-1 alpha in human melanoma under non-hypoxic conditions. Mol Cancer. 2009; 8: 104.
  • 179
    Comito G, Calvani M, Giannoni E, et al. HIF-1alpha stabilization by mitochondrial ROS promotes Met-dependent invasive growth and vasculogenic mimicry in melanoma cells. Free Radic Biol Med. 2011; 51: 893904.
  • 180
    Kuphal S, Winklmeier A, Warnecke C, et al. Constitutive HIF-1 activity in malignant melanoma. Eur J Cancer. 2010; 46: 115969.
  • 181
    Chun YS, Lee KH, Choi E, et al. Phorbol ester stimulates the nonhypoxic induction of a novel hypoxia-inducible factor 1 alpha isoform: implications for tumor promotion. Cancer Res. 2003; 63: 87007.
  • 182
    Trevino-Villarreal JH, Cotanche DA, Sepulveda R, et al. Host-derived pericytes and Sca-1+ cells predominate in the MART-1- stroma fraction of experimentally induced melanoma. J Histochem Cytochem. 2011; 59: 106075.
  • 183
    Frank NY, Schatton T, Kim S, et al. VEGFR-1 expressed by malignant melanoma-initiating cells is required for tumor growth. Cancer Res. 2011; 71: 147485.
  • 184
    Levy C, Khaled M, Fisher DE. MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med. 2006; 12: 40614.
  • 185
    Hamsa TP, Kuttan G. Antiangiogenic activity of berberine is mediated through the downregulation of hypoxia-inducible factor-1, VEGF, and proinflammatory mediators. Drug Chem Toxicol. 2012; 35: 5770.
  • 186
    Trapp V, Parmakhtiar B, Papazian V, et al. Anti-angiogenic effects of resveratrol mediated by decreased VEGF and increased TSP1 expression in melanoma-endothelial cell co-culture. Angiogenesis. 2010; 13: 30515.
  • 187
    Yang XC, Tu CX, Luo PH, et al. Antimetastatic activity of MONCPT in preclinical melanoma mice model. Invest New Drugs. 2010; 28: 80011.
  • 188
    Franco R, Cantile M, Scala S, et al. Histomorphologic parameters and CXCR4 mRNA and protein expression in sentinel node melanoma metastasis are correlated to clinical outcome. Cancer Biol Ther. 2010; 9: 4239.
  • 189
    Petrylak DP, Tangen CM, Hussain MH, et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med. 2004; 351: 151320.
  • 190
    Tannock IF, de Wit R, Berry WR, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 2004; 351: 150212.
  • 191
    Mimeault M, Batra SK. Animal models of prostate carcinogenesis underlining the critical implication of prostatic stem progenitor cells. Biochim Biophys Acta. 2011; 1816: 2537.
  • 192
    Tu SM, Lin SH. Prostate cancer stem cells. Clin Genitourin Cancer. 2012; 10: 6976.
  • 193
    Jeter CR, Liu B, Liu X, et al. NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene. 2011; 30: 383345.
  • 194
    Dubrovska A, Elliott J, Salamone RJ, et al. CXCR4 expression in prostate cancer progenitor cells. PLoS ONE. 2012; 7: e31226.
  • 195
    Nanni S, Benvenuti V, Grasselli A, et al. Endothelial NOS, estrogen receptor beta, and HIFs cooperate in the activation of a prognostic transcriptional pattern in aggressive human prostate cancer. J Clin Invest. 2009; 119: 1093108.
  • 196
    Shaida N, Chan P, Turley H, et al. Nuclear localization of factor inhibitor hypoxia-inducible factor in prostate cancer is associated with poor prognosis. J Urol. 2011; 185: 15138.
  • 197
    Al-Ubaidi FL, Schultz N, Egevad L, et al. Castration therapy of prostate cancer results in downregulation of HIF-1 alpha levels. Int J Radiat Oncol Biol Phys. 2012; 82: 12438.
  • 198
    Hennessey D, Martin LM, Atzberger A, et al. Exposure to hypoxia following irradiation increases radioresistance in prostate cancer cells. Urol Oncol. 2011; in press: doi: 10.1016/j.urolonc.2011.10.008.
  • 199
    Mitani T, Yamaji R, Higashimura Y, et al. Hypoxia enhances transcriptional activity of androgen receptor through hypoxia-inducible factor-1 alpha in a low androgen environment. J Steroid Biochem Mol Biol. 2011; 123: 5864.
  • 200
    Mishra A, Wang J, Shiozawa Y, et al. Hypoxia stabilizes GAS6/AXl signalling in metastatic prostate cancer. Mol Cancer Res. 2012; 10: 70312.
  • 201
    Hagtvet E, Roe K, Olsen DR. Liposomal doxorubicin improves radiotherapy response in hypoxic prostate cancer xenografts. Radiat Oncol. 2011; 6: 135.
  • 202
    Cho SY, Lee HJ, Jeong SJ, et al. Sphingosine kinase 1 pathway is involved in melatonin-induced HIF-1 alpha inactivation in hypoxic PC-3 prostate cancer cells. J Pineal Res. 2011; 51: 8793.
  • 203
    Branco-Price C, Zhang N, Schnelle M, et al. Endothelial cell HIF-1 alpha and HIF-2 alpha differentially regulate metastatic success. Cancer Cell. 2012; 21: 5265.
  • 204
    Yamasaki M, Nomura T, Sato F, et al. Chronic hypoxia induces androgen-independent and invasive behavior in LNCaP human prostate cancer cells. Urol Oncol. 2012; in press:. doi:10.1016/j.urolonc.2011.12.007.
  • 205
    Giannoni E, Bianchini F, Masieri L, et al. Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. Cancer Res. 2010; 70: 694556.
  • 206
    Giannoni E, Bianchini F, Calorini L, et al. Cancer associated fibroblasts exploit reactive oxygen species through a pro-inflammatory signature leading to EMT and stemness. Antioxid Redox Signal. 2011; 14: 236171.
  • 207
    Melchior SW, Corey E, Ellis WJ, et al. Early tumor cell dissemination in patients with clinically localized carcinoma of the prostate. Clin Cancer Res. 1997; 3: 24956.
  • 208
    Shiozawa Y, Pedersen EA, Havens AM, et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest. 2011; 121: 1298312.
  • 209
    Selander KS, Brown DA, Sequeiros GB, et al. Serum macrophage inhibitory cytokine-1 concentrations correlate with the presence of prostate cancer bone metastases. Cancer Epidemiol. Biomarkers Prev. 2007; 16: 5327.
  • 210
    Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood. 2006; 107: 17617.
  • 211
    Shiozawa Y, Pienta KJ, Taichman RS. Hematopoietic stem cell niche is a potential therapeutic target for bone metastatic tumors. Clin Cancer Res. 2011; 17: 55538.
  • 212
    Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell. 2010; 7: 15061.
  • 213
    Chinni SR, Sivalogan S, Dong Z, et al. FCXCL12/CXCR4 signalling activates Akt-1 and MMP-9 expression in prostate cancer cells: the role of bone microenvironment-associated CXCL12. Prostate. 2006; 66: 3248.
  • 214
    Chinni SR, Yamamoto H, Dong Z, et al. CXCL12/CXCR4 transactivates HER2 in lipid rafts of prostate cancer cells and promotes growth of metastatic deposits in bone. Mol Cancer Res. 2008; 6: 44657.
  • 215
    Joseph J, Shiozawa Y, Jung Y, et al. Disseminated prostate cancer cells can instruct hematopoietic stem and progenitor cells to regulate bone phenotype. Mol Cancer Res. 2012; 10: 28292.
  • 216
    Kobayashi A, Okuda H, Xing F, et al. PBone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J Exp Med. 2011; 208: 264155.
  • 217
    Mimeault M, Batra SK. Frequent gene products and molecular pathways altered in prostate cancer- and metastasis-initiating cells and novel promising multitargeted therapies. Mol Med. 2011; 17: 64964.
  • 218
    Reddy KR, Guan Y, Qin G, et al. Combined treatment targeting HIF-1 alpha and Stat3 is a potent strategy for prostate cancer therapy. Prostate. 2011; 71: 1796809.
  • 219
    Jeong CW, Yoon CY, Jeong SJ, et al. The role of hypoxia-inducible factor-1 alpha and -2 alpha in androgen insensitive prostate cancer cells. Urol Oncol. 2012; in press: doi: 10.1016/j.urolonc.2012.03.022.
  • 220
    Ellis L, Lehet K, Ramakrishnan S, et al. Concurrent HDAC and mTORC1 inhibition attenuate androgen receptor and hypoxia signalling associated with alterations in microRNA expression. PLoS ONE. 2011; 6: e27178.
  • 221
    Befani CD, Vlachostergios PJ, Hatzidaki E, et al. Bortezomib represses HIF-1alpha protein expression and nuclear accumulation by inhibiting both PI3K/Akt/TOR and MAPK pathways in prostate cancer cells. J Mol Med. 2012; 90: 4554.
  • 222
    Sinha I, Null K, Wolter W, et al. Methylseleninic acid downregulates hypoxia-inducible factor-1 alpha in invasive prostate cancer. Int J Cancer. 2012; 130: 14309.
  • 223
    Jung SJ, Kim CI, Park CH, et al. Correlation between chemokine receptor CXCR4 expression and prognostic factors in patients with prostate cancer. Korean J Urol. 2011; 52: 60711.
  • 224
    Sun YX, Schneider A, Jung Y, et al. Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res. 2005; 20: 31829.
  • 225
    Baron A, Migita T, Tang D, et al. Fatty acid synthase: a metabolic oncogene in prostate cancer? J Cell Biochem. 2004; 91: 4753.
  • 226
    Yamaguchi R, Janssen E, Perkins G, et al. Efficient elimination of cancer cells by deoxyglucose-ABT-263/737 combination therapy. PLoS ONE. 2011; 6: e24102.
  • 227
    Moon JS, Jin WJ, Kwak JH, et al. Androgen stimulates glycolysis for de novo lipid synthesis by increasing the activities of hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 in prostate cancer cells. Biochem J. 2011; 433: 22533.
  • 228
    Stein M, Lin H, Jeyamohan C, et al. Targeting tumor metabolism with 2-deoxyglucose in patients with castrate-resistant prostate cancer and advanced malignancies. Prostate. 2010; 70: 138894.
  • 229
    Gottfried E, Rogenhofer S, Waibel H, et al. Pioglitazone modulates tumor cell metabolism and proliferation in multicellular tumor spheroids. Cancer Chemother Pharmacol. 2011; 67: 11726.
  • 230
    Sotgia F, Martinez-Outschoorn UE, Howell A, et al. Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. Annu Rev Pathol. 2012; 7: 42367.
  • 231
    Hu H, Chai Y, Wang L, et al. Pentagalloylglucose induces autophagy and caspase-independent programmed deaths in human PC-3 and mouse TRAMP-C2 prostate cancer cells. Mol Cancer Ther. 2009; 8: 283343.
  • 232
    Ben Sahra I, Laurent K, Giuliano S, et al. Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res. 2010; 70: 246575.
  • 233
    Chhipa RR, Wu Y, Ip C. AMPK-mediated autophagy is a survival mechanism in androgen-dependent prostate cancer cells subjected to androgen deprivation and hypoxia. Cell Signal. 2011; 23: 146672.
  • 234
    Nomura DK, Lombardi DP, Chang JW, et al. Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer. Chem Biol. 2011; 18: 84656.
  • 235
    Sorlie T, Wang Y, Xiao C, et al. Distinct molecular mechanisms underlying clinically relevant subtypes of breast cancer: gene expression analyses across three different platforms. BMC Genomics. 2006; 7: 127.
  • 236
    Guedj M, Marisa L, de Reynies A, et al. A refined molecular taxonomy of breast cancer. Oncogene. 2011; 31: 1196206.
  • 237
    Punglia RS, Morrow M, Winer EP, et al. Local therapy and survival in breast cancer. N Engl J Med. 2007; 356: 2399405.
  • 238
    Arteaga CL, Sliwkowski MX, Osborne CK, et al. Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol. 2012; 9: 1632.
  • 239
    Dunn LK, Mohammad KS, Fournier PG, et al. Hypoxia and TGF-beta drive breast cancer bone metastases through parallel signalling pathways in tumor cells and the bone microenvironment. PLoS ONE. 2009; 4: e6896.
  • 240
    Shipitsin M, Campbell LL, Argani P, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell. 2007; 11: 25973.
  • 241
    Bandyopadhyay A, Wang L, Agyin J, et al. Doxorubicin in combination with a small TGFbeta inhibitor: a potential novel therapy for metastatic breast cancer in mouse models. PLoS ONE. 2010; 5: e10365.
  • 242
    Yin X, Wolford CC, Chang YS, et al. ATF3, an adaptive-response gene, enhances TGF{beta} signalling and cancer-initiating cell features in breast cancer cells. J Cell Sci. 2010; 123: 355865.
  • 243
    Wang Y, Yu Y, Tsuyada A, et al. Transforming growth factor-beta regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene. 2011; 30: 147080.
  • 244
    Oliveras-Ferraros C, Cufi S, Vazquez-Martin A, et al. Micro(mi)RNA expression profile of breast cancer epithelial cells treated with the anti-diabetic drug metformin: induction of the tumor suppressor miRNA let-7a and suppression of the TGFbeta-induced oncomiR miRNA-181a. Cell Cycle. 2011; 10: 114451.
  • 245
    Asiedu MK, Ingle JN, Behrens MD, et al. TGFbeta/TNF(alpha)-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Res. 2011; 71: 470719.
  • 246
    Natarajan K, Xie Y, Baer MR, et al. Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol. 2012; 83: 1084103.
  • 247
    Hirsch HA, Iliopoulos D, Tsichlis PN, et al. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 2009; 69: 750711.
  • 248
    Dubrovska A, Hartung A, Bouchez LC, et al. CXCR4 activation maintains a stem cell population in tamoxifen-resistant breast cancer cells through AhR signalling. Br J Cancer. 2012; 107: 4352.
  • 249
    Van Phuc P, Nhan PL, Nhung TH, et al. TDownregulation of CD44 reduces doxorubicin resistance of CD44CD24 breast cancer cells. Onco Targets Ther. 2011; 4: 718.
  • 250
    Song CW, Lee H, Dings RP, et al. Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells. Sci Rep. 2012; 2: 362.
  • 251
    Bendinelli P, Matteucci E, Maroni P, et al. NF-kappaB activation, dependent on acetylation/deacetylation, contributes to HIF-1 activity and migration of bone metastatic breast carcinoma cells. Mol Cancer Res. 2009; 7: 132841.
  • 252
    Huang M, Li Y, Zhang H, et al. Breast cancer stromal fibroblasts promote the generation of CD44+CD24− cells through SDF-1/CXCR4 interaction. J Exp Clin Cancer Res. 2010; 29: 80.
  • 253
    Ling LJ, Wang S, Liu XA, et al. A novel mouse model of human breast cancer stem-like cells with high CD44+CD24−/lower phenotype metastasis to human bone. Chin Med J. 2008; 121: 19806.
  • 254
    Liang Z, Wu T, Lou H, et al. Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Res. 2004; 64: 43028.
  • 255
    Okuda H, Kobayashi A, Xia B, et al. Hyaluronan synthase HAS2 promotes tumor progression in bone by stimulating the interaction of breast cancer stem-like cells with macrophages and stromal cells. Cancer Res. 2012; 72: 53747.
  • 256
    Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001; 410: 506.
  • 257
    Erler JT, Bennewith KL, Cox TR, et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. 2009; 15: 3544.
  • 258
    Ibrahim T, Sacanna E, Gaudio M, et al. Role of RANK, RANKL, OPG, and CXCR4 tissue markers in predicting bone metastases in breast cancer patients. Clin Breast Cancer. 2011; 11: 36975.
  • 259
    Lu X, Mu E, Wei Y, et al. , et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell. 2011; 20: 70114.
  • 260
    Suva LJ, Griffin RJ, Makhoul I. Mechanisms of bone metastases of breast cancer. Endocr Relat Cancer. 2009; 16: 70313.
  • 261
    Buijs JT, Henriquez NV, van Overveld PG, et al. vTGF-beta and BMP7 interactions in tumour progression and bone metastasis. Clin Exp Metastasis. 2007; 24: 60917.
  • 262
    Buijs JT, van der Horst G, van den Hoogen C, et al. The BMP2/7 heterodimer inhibits the human breast cancer stem cell subpopulation and bone metastases formation. Oncogene. 2012; 31: 216474.
  • 263
    Lee KH, Hsu EC, Guh JH, et al. Targeting energy metabolic and oncogenic signalling pathways in triple-negative breast cancer by a novel adenosine monophosphate-activated protein kinase (AMPK) activator. J Biol Chem. 2011; 286: 3924758.
  • 264
    Iliopoulos D, Hirsch HA, Struhl K. Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types. Cancer Res. 2011; 71: 3196201.
  • 265
    Furuta E, Pai SK, Zhan R, et al. Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res. 2008; 68: 100311.
  • 266
    Pandey PR, Okuda H, Watabe M, et al. Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase. Breast Cancer Res Treat. 2011; 130: 38798.
  • 267
    Pham PV, Phan NL, Nguyen NT, et al. Differentiation of breast cancer stem cells by knockdown of CD44: promising differentiation therapy. J Transl Med. 2011; 9: 209.
  • 268
    Zakikhani M, Dowling R, Fantus IG, et al. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res. 2006; 66: 1026973.
  • 269
    Del Barco S, Vazquez-Martin A, Cufi S, et al. Metformin: multi-faceted protection against cancer. Oncotarget. 2011; 2: 896917.
  • 270
    Brand RE, Lerch MM, Rubinstein WS, et al. Advances in counselling and surveillance of patients at risk for pancreatic cancer. Gut. 2007; 56: 14609.
  • 271
    Hidalgo M. Pancreatic cancer. N Engl J Med. 2010; 362: 160517.
  • 272
    Di Marco M, Di Cicilia R, Macchini M, et al. Metastatic pancreatic cancer: is gemcitabine still the best standard treatment? Oncol Rep. 2010; 23: 118392.
  • 273
    Mimeault M, Brand RE, Sasson AA, et al. Recent advances on the molecular mechanisms involved in pancreatic cancer progression and therapies. Pancreas. 2005; 31: 30116.
  • 274
    Onozuka H, Tsuchihara K, Esumi H. Hypoglycemic/hypoxic condition in vitro mimicking the tumor microenvironment markedly reduced the efficacy of anticancer drugs. Cancer Sci. 2011; 102: 97582.
  • 275
    Mimeault M, Batra SK. Recent progress on normal and malignant pancreatic stem/progenitor cell research: therapeutic implications for the treatment of type 1 or 2 diabetes mellitus and aggressive pancreatic cancer. Gut. 2008; 57: 145668.
  • 276
    Bao B, Wang Z, Ali S, et al. Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prev Res. 2012; 5: 35564.
  • 277
    Chaika NV, Yu F, Purohit V, et al. Differential expression of metabolic genes in tumor and stromal components of primary and metastatic loci in pancreatic adenocarcinoma. PLoS ONE. 2012; 7: e32996.
  • 278
    Kim EJ, Simeone DM. Advances in pancreatic cancer. Curr Opin Gastroenterol. 2011; 27: 4606.
  • 279
    Akakura N, Kobayashi M, Horiuchi I, et al. Constitutive expression of hypoxia-inducible factor-1 alpha renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation. Cancer Res. 2001; 61: 654854.
  • 280
    Wei H, Wang C, Chen L. Proliferating cell nuclear antigen, survivin, and CD34 expressions in pancreatic cancer and their correlation with hypoxia-inducible factor 1 alpha. Pancreas. 2006; 32: 15963.
  • 281
    Cheng BQ, Segersvard R, Permert J, et al. Pancreatic cancer cells expressing hypoxia-inducible factor-1 alpha tend to be adjacent to intratumoral blood vessels. Eur Surg Res. 2010; 45: 1347.
  • 282
    Zhang JJ, Wu HS, Wang L, et al. Expression and significance of TLR4 and HIF-1 alpha in pancreatic ductal adenocarcinoma. World J Gastroenterol. 2010; 16: 28818.
  • 283
    Ying H, Kimmelman AC, Lyssiotis CA, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 2012; 149: 65670.
  • 284
    Goldberg L, Israeli R, Kloog Y. FTS and 2-DG induce pancreatic cancer cell death and tumor shrinkage in mice. Cell Death Dis. 2012; 3: e284.
  • 285
    Taly S-K, Galen H, Daniel VH, et al. Hedgehog signaling and desmoplasia are regulated by hypoxia in pancreatic cancer. Fourth AACR International Conference on Molecular Diagnostics in Cancer Therapeutic Development, Sep 27–30, 2010; Denver, CO.
  • 286
    Marechal R, Demetter P, Nagy N, et al. High expression of CXCR4 may predict poor survival in resected pancreatic adenocarcinoma. Br J Cancer. 2009; 100: 144451.
  • 287
    Onishi H, Kai M, Odate S, et al. Hypoxia activates the hedgehog signalling pathway in a ligand-independent manner by upregulation of Smo transcription in pancreatic cancer. Cancer Sci. 2011; 102: 114450.
  • 288
    Onishi H, Morifuji Y, Kai M, et al. Hedgehog inhibitor decreases chemosensitivity to 5-FU and gemcitabine under hypoxic conditions in pancreatic cancer. Cancer Sci. 2012; in press.
  • 289
    Chang Q, Jurisica I, Do T, et al. Hypoxia predicts aggressive growth and spontaneous metastasis formation from orthotopically grown primary xenografts of human pancreatic cancer. Cancer Res. 2011; 71: 311020.
  • 290
    Melstrom LG, Salabat MR, Ding XZ, et al. Apigenin down-regulates the hypoxia response genes: HIF-1 alpha, GLUT-1, and VEGF in human pancreatic cancer cells. J Surg Res. 2011; 167: 17381.
  • 291
    Sun JD, Liu Q, Wang J, et al. Selective tumor hypoxia targeting by hypoxia-activated prodrug TH-302 inhibits tumor growth in preclinical models of cancer. Clin Cancer Res. 2012; 18: 75870.
  • 292
    Yang S, Kimmelman AC. A critical role for autophagy in pancreatic cancer. Autophagy. 2011; 7: 9123.
  • 293
    Xi H, Kurtoglu M, Liu H, et al. 2-Deoxy-D-glucose activates autophagy via endoplasmic reticulum stress rather than ATP depletion. Cancer Chemother Pharmacol. 2011; 67: 899910.
  • 294
    Bhardwaj V, Rizvi N, Lai MB, et al. Glycolytic enzyme inhibitors affect pancreatic cancer survival by modulating its signalling and energetics. Anticancer Res. 2010; 30: 7439.
  • 295
    Cao X, Bloomston M, Zhang T, et al. Synergistic antipancreatic tumor effect by simultaneously targeting hypoxic cancer cells with HSP90 inhibitor and glycolysis inhibitor. Clin Cancer Res. 2008; 14: 18319.
  • 296
    Cheng ZX, Sun B, Wang SJ, et al. Nuclear factor-kappaB-dependent epithelial to mesenchymal transition induced by HIF-1 alpha activation in pancreatic cancer cells under hypoxic conditions. PLoS ONE. 2011; 6: e23752.