SEARCH

SEARCH BY CITATION

References

  • 1
    Akimoto T, Numata F, Tamura M, et al. Abrogation of bronchial eosinophilic inflammation and airway hyperreactivity in signal transducers and activators of transcription (STAT)6-deficient mice. J Exp Med. 1998; 187: 153742.
  • 2
    Kuperman DA, Schleimer RP. Interleukin-4, interleukin-13, signal transducer and activator of transcription factor 6, and allergic asthma. Curr Mol Med. 2008; 8: 38492.
  • 3
    Wills-Karp M. Interleukin-13 in asthma pathogenesis. Immunol Rev. 2004; 202: 17590.
  • 4
    Izuhara K, Arima K, Kanaji S, et al. IL-13: a promising therapeutic target for bronchial asthma. Curr Med Chem. 2006; 13: 22918.
  • 5
    Izuhara K, Shirakawa T, Adra CN, et al. Emerging therapeutic targets in allergy: IL-4Rα and Stat6. Emerging Therapeutic Targets. 1999; 3: 3819.
  • 6
    Oh CK, Geba GP, Molfino N. Investigational therapeutics targeting the IL-4/IL-13/STAT6 pathway for the treatment of asthma. Eur Resp Rev. 2010; 115: 4654.
  • 7
    Kuperman DA, Huang X, Koth LL, et al. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nature Med. 2002; 8: 8859.
  • 8
    Holgate ST. The epithelium takes centre stage in asthma and atopic dermatitis. Trends Immunol. 2007; 28: 24851.
  • 9
    Kato A, Schleimer RP. Beyond inflammation: epithelial cells are at the interface of innate and adaptive immunity. Current Opinion Immunol. 2007; 19: 110.
  • 10
    Adams NP, Jones PW. The dose-response characteristics of inhaled corticosteroids when used to treat asthma: an overview of Cochrane systematic reviews. Respirat Med. 2006; 100: 1297306.
  • 11
    Frois C, Wu EQ, Ray S, et al. Inhaled corticosteroids or long-acting beta-agonists alone or in fixed-dose combinations in asthma treatment: a systematic review of fluticasone/budesonide and formoterol/salmeterol. Clin Ther. 2009; 31: 2779803.
  • 12
    Walker W, Healey GD, Hopkin JM. RNA interference of STAT6 rapidly attenuates ongoing interleukin-13-mediated events in lung epithelial cells. Immunology. 2009; 127: 25666.
  • 13
    Healey GD, Zinnen S, Lockridge JA, et al. Identification of small interfering RNA targeting signal transducer and activator of transcription 6: characterisation and selection of candidates for pre-clinical development. J RNAi Gene Silencing. 2010; 25: 40110.
  • 14
    Finkelman FD, Wills-Karp M. Usefulness and optimization of mouse models of allergic airway disease. J Allergy Clin Immunol. 2008; 121: 6036.
  • 15
    Wenzel S, Holgate ST. The mouse trap: it still yields few answers in asthma. Am J Respir Crit Care Med. 2006; 174: 11736.
  • 16
    Di Valentin E, Crahay C, Garbacki N, et al. New asthma biomarkers: lessons from murine models of acute and chronic asthma. Am J Physiol Lung Cell Mol Physiol. 2009; 296: L18597.
  • 17
    Murugan A, Prys-Ricard C, Calhoun WJ. Biomarkers in asthma. Curr Opin Pulm Med. 2009; 15: 128.
  • 18
    Braunstahl G-J. United airways concept. What does it teach us about systemic inflammation in airways disease? Proc Am Thorac Soc. 2009; 6: 6524.
  • 19
    Togias A. Rhinitis and asthma: evidence for respiratory system integration. J Allergy Clin Immunol. 2003; 111: 117183.
  • 20
    Brozek JL, Bousquet J, Baena-Cagnani CE, et al. Allergic rhinitis and its impact on asthma (ARIA) guidelines. 2010 revision. J Allergy Clin Immunol. 2010; 126: 46676.
  • 21
    Dimova S, Brewster ME, Noppe M, et al. The use of human nasal in vitro cell systems during drug discovery and development. Toxicol In Vitro. 2005; 19: 10722.
  • 22
    Erin EM, Leaker BR, Zacharasiewicz A, et al. Effects of a reversible β-tryptase and trypsin inhibitor (RWJ-58643) on nasal allergic responses. Clin Exp Allergy. 2006; 36: 45864.
  • 23
    Bai S, Yang T, Abbruscato TJ, et al. Evaluation of human nasal RPMI 2650 cells grown at an air-liquid interface as a model for nasal drug transport studies. J Pharma Sci. 2008; 97: 116578.
  • 24
    Ober C, Tan Z, Sun Y, et al. Effect of variation in CHI3L1 on serum YKL-40 level, risk of asthma, and lung function. N Engl J Med. 2008; 358: 168291.
  • 25
    Ravensberg AJ, Ricciardolo FLM, van Schadewijk A, et al. Eotaxin-2 and eotaxin-3 expression is associated with persistent eosinophilic bronchial inflammation in patients with asthma after allergen challenge. J Allergy Clin Immunol. 2005; 115: 77985.
  • 26
    Eurich K, Segawa M, Toei-Shimizu S, et al. Potential role of chitinase 3-like-1in inflammation-associated carcinogenic changes of epithelial cells. World J Gasrroenterol. 2009; 15: 524959.
  • 27
    van Wetering S, Zuyderduyn S, Ninaber DK, et al. Epithelial differentiation is a determinant in the production of eotaxin-2 and -3 by bronchial epithelial cells in response to IL-4 and IL-13. Mol Immunol. 2007; 44: 80311.
  • 28
    Hartl D, Lee CG, Da Silva CA, et al. Novel biomarkers in asthma: chemokines and chitinase-like proteins. Curr Opin Allergy Clin Immunol. 2009; 9: 606.
  • 29
    Ross AJ, Dailey LA, Brighton LE, et al. Transcriptional profiling of mucociliary differentiation in human airway epithelial cells. Am J Respir Cell Mol Biol. 2007; 37: 16985.
  • 30
    GINA. From the Global Strategy for Asthma Management and Prevention, Global Initiative for Asthma (GINA) 2012. Available from: http://www.ginasthma.org/.
  • 31
    American Thoracic Society. Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease (COPD) and asthma. Am Rev Respir Dis. 1987; 136: 22544.
  • 32
    Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001; 29: 20027.
  • 33
    Bitterle E, Karg E, Schroeppel A, et al. Dose-controlled exposure of A549 epithelial cells at the air-liquid interface to airborne ultrafine carbonaceous particles. Chemosphere. 2006; 65: 178490.
  • 34
    Lin H, Li H, Cho H-J, et al. Air-liquid interface (ALI) cultures of human bronchial epithelial cell monolayers as an in vitro model for airway drug transport studies. J Pharma Sci. 2007; 96: 34150.
  • 35
    Erin EM, Zacharasiewicz AS, Nicholoson GC, et al. Topical corticosteroid inhibits interleukin-4, -5 and -13 in nasal secretions following allergen challenge. Clin Exp Allergy. 2005; 35: 160814.
  • 36
    Howarth PH, Persson CG, Meltzer EO, et al. Objective monitoring of nasal airway inflammation in rhinitis. J Allergy Clin Immunol. 2005; 115: s41441.
  • 37
    Bourdin A, Gras D, Vachier I, et al. Upper airway. 1. Allergic rhinitis and asthma: united disease through epithelial cells. Thorax. 2009; 64: 9991004.
  • 38
    Syed F, Huang CC, Li K, et al. Identification of interleukin-13 related biomarkers using peripheral blood mononuclear cells. Biomarkers. 2007; 12: 41423.
  • 39
    Kraft M. Asthma phenotypes and interleukin-13–moving closer to personalized medicine. N Engl J Med. 2011; 365: 11414.
  • 40
    Matsukura S, Stellato C, Georas SN, et al. Interleukin-13 upregulates eotaxin expression in airway epithelial cells by a STAT6-dependent mechanism. Am J Respir Cell Mol Biol. 2001; 24: 75561.
  • 41
    Chhin B, Pham JT, El Zein L, et al. Identification of transcripts overexpressed during airway epithelium differentiation. Eur Respir J. 2008; 32: 1218.
  • 42
    Chu Q, Tousignant JD, Fang S, et al. Binding and uptake of cationic lipid: pDNA complexes by polarized airway epithelial cells. Human Gene Ther. 1999; 10: 2536.
  • 43
    Mennesson E, Erbacher P, Piller V, et al. Transfection efficiency and uptake process of polyplexes in human lung endothelial cells: a comparative study in non-polarized and polarized cells. J Gene Med. 2005; 7: 72938.
  • 44
    Heijink IH, van Oosterhout A, Kapus A. Epidermal growth factor receptor signalling contributes to house dust mite-induced epithelial barrier dysfunction. Eur Respir J. 2010; 36: 101626.
  • 45
    Lachowicz-Scroggins ME, Boushey HA, Finkbeiner WE, et al. Interleukin-13-induced mucous metaplasia increases susceptibility of human airway epithelium to rhinovirus infection. Am J Respir Cell Mol Biol. 2010; 43: 65261.
  • 46
    Christodoulopoulos P, Cameron L, Nakamura Y, et al. Th2 cytokine-associated transcription factors in atopic and nonatopic asthma: evidence for differential signal transducer and activator of transcription 6 expression. J Allergy Clin Immunol. 2001; 107: 58691.
  • 47
    Ghaffar O, Christodoulopoulos P, Lamkhioued B, et al. In vivo expression of signal transducer and activator of transcription factor 6 (STAT6) in nasal mucosa from atopic allergic rhinitis: effect of topical corticosteroids. Clin Exp Allergy. 2000; 30: 8693.
  • 48
    Bousquet J, Vignola AM, Demoly P. Links between rhinitis and asthma. Allergy. 2003; 58: 691706.
  • 49
    McDougall CM, Blaylock MG, Douglas JG, et al. Nasal epithelial cells as surrogates for bronchial epithelial cells in airway inflammation studies. Am J Respir Cell Mol Biol. 2008; 39: 5608.