• 1
    Lee GYH, Lim CT. Biomechanics approaches to studying human diseases. Trends Biotechnol. 2007; 3: 1118.
  • 2
    Dewey CF, Bussolari SR, Gimbrone MA, et al. The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng. 1981; 3: 17785.
  • 3
    Tzima E, Irani-Tehrani M, Kiosses WB, et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature. 2005; 7057: 42631.
  • 4
    Traub O, Berk BC. Laminar shear stress mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler Thromb Vasc Biol. 1998; 5: 67785.
  • 5
    Tokarev A, Butylin A, Ataullakhanov F. Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes. Biophys J. 2011; 4: 799808.
  • 6
    Bussolari SR, Dewey CF, Gimbrone MA. Apparatus for subjecting living cells to fluid shear stress. Rev Sci Instrum. 1982; 12: 18514.
  • 7
    Hartet H. Blutgerinnungsstudien mit der thrombelastographie, einem neuen untersuchungsvefahren. Klin Wochenschr. 1948; 26: 57783.
  • 8
    Bolliger D, Seeberger MD, Tanaka KA. Principles and practice of thromboelastography in clinical coagulation management and transfusion practice. Transfus Med Rev. 2012; 1: 113.
  • 9
    Jackson GNB, Ashpole KJ, Yentis SM. The teg® vs the rotem® thromboelastography/thromboelastometry systems. Anaesthesia. 2009; 2: 2125.
  • 10
    Luddington RJ. Thrombelastography/thromboelastometry. Clin Lab Haematol. 2005; 2: 8190.
  • 11
    Di Benedetto P, Baciarello M, Cabetti L, et al. Thrombelastography. Present and future perspectives in clinical practice. Minerva Anestesiol. 2003; 6: 501–9, 915.
  • 12
    Katori N, Tanaka KA, Szlam F, et al. The effects of platelet count on clot retraction and tissue plasminogen activator-induced fibrinolysis on thrombelastography. Anesth Analg. 2005; 6: 17815.
  • 13
    Cohen I, De Vries A. Platelet contractile regulation in an isometric system. Nature. 1973; 5427: 367.
  • 14
    Salganicoff L, Loughnane MH, Sevy RW, et al. The platelet strip. I. A low-fibrin contractile model of thrombin-activated platelets. Am J Physiol Cell Physiol. 1985; 3: C27987.
  • 15
    Carr M. Development of platelet contractile force as a research and clinical measure of platelet function. Cell Biochem Biophys. 2003; 1: 5578.
  • 16
    Jen C, McIntire L. The structural properties and contractile force of a clot. Cell Motil. 1982; 5: 44555.
  • 17
    Liang X, Han S, Reems J-A, et al. Platelet retraction force measurements using flexible post force sensors. Lab Chip. 2010; 8: 9918.
  • 18
    Glover CJ, McIntire LV, Leverett LB, et al. Effect of shear stress on clot structure formation. ASAIO J. 1974; 1: 4638.
  • 19
    Collins P, Macchiavello L, Lewis S, et al. Global tests of haemostasis in critically ill patients with severe sepsis syndrome compared to controls. Br J Haematol. 2006; 2: 2207.
  • 20
    Sharma SK, Philip J, Whitten CW, et al. Assessment of changes in coagulation in parturients with preeclampsia using thromboelastography. Anesthesiology. 1999; 2: 38590.
  • 21
    Rai R, Tuddenham E, Backos M, et al. Thromboelastography, whole-blood haemostasis and recurrent miscarriage. Hum Reprod. 2003; 12: 25403.
  • 22
    McCrath D, Cerboni E, Frumento R, et al. Thromboelastography maximum amplitude predicts postoperative thrombotic complications including myocardial infarction. Anesth Analg. 2005; 6: 157683.
  • 23
    Francis JL, Francis DA, Gunathilagan GJ. Assessment of hypercoagulability in patients with cancer using the sonoclot analyzer™ and thromboelastography. Thromb Res. 1994; 4: 33546.
  • 24
    Bowbrick VA, Mikhailidis DP, Stansby G. Value of thromboelastography in the assessment of platelet function. Clin Appl Thromb Hemost. 2003; 2: 13742.
  • 25
    Mousa S, Khurana S, Forsythe M. Comparative in vitro efficacy of different platelet glycoprotein iib/iiia antagonists on platelet-mediated clot strength induced by tissue factor with use of thromboelastography: differentiation among glycoprotein iib/iiia antagonists. Arterioscler Thromb Vasc Biol. 2000; 4: 11627.
  • 26
    Weisel JW. Enigmas of blood clot elasticity. Science. 2008; 5875: 4567.
  • 27
    Collet JP, Allali Y, Lesty C, et al. Altered fibrin architecture is associated with hypofibrinolysis and premature coronary atherothrombosis. Arterioscler Thromb Vasc Biol. 2006; 11: 256773.
  • 28
    Undas A, Zawilska K, Ciesla-Dul M, et al. Altered fibrin clot structure/function in patients with idiopathic venous thromboembolism and in their relatives. Blood. 2009; 19: 42728.
  • 29
    Undas A, Slowik A, Wolkow P, et al. Fibrin clot properties in acute ischemic stroke: relation to neurological deficit. Thromb Res. 2010; 4: 35761.
  • 30
    Riha P, Wang X, Liao R, et al. Elasticity and fracture strain of whole blood clots. Clin Hemorheol Microcirc. 1999; 1: 459.
  • 31
    Gersh K, Nagaswami C, Weisel J. Fibrin network structure and clot mechanical properties are altered by incorporation of erythrocytes. Thromb Haemost. 2009; 6: 116975.
  • 32
    Tynngård N, Lindahl T, Ramström S, et al. Effects of different blood components on clot retraction analysed by measuring elasticity with a free oscillating rheometer. Platelets. 2006; 8: 54554.
  • 33
    Yürekli B, Ozcebe O, Kirazli S, et al. Global assessment of the coagulation status in type 2 diabetes mellitus using rotation thromboelastography. Blood Coagul Fibrinolysis. 2006; 7: 5459.
  • 34
    Feuring M, Wehling M, Burkhardt H, et al. Coagulation status in coronary artery disease patients with type ii diabetes mellitus compared with non-diabetic coronary artery disease patients using the pfa-100® and rotem®. Platelets. 2010; 8: 61622.
  • 35
    Angiolillo D, Capranzano P, Desai B, et al. Impact of p2y(12) inhibitory effects induced by clopidogrel on platelet procoagulant activity in type 2 diabetes mellitus patients. Thromb Res. 2009; 3: 31822.
  • 36
    Shin S, Ku Y, Babu N, et al. Erythrocyte deformability and its variation in diabetes mellitus. Indian J Exp Biol. 2007; 1: 1218.
  • 37
    Viuff D, Andersen S, Sørensen B, et al. Optimizing thrombelastography (teg) assay conditions to monitor rfviia (novoseven) therapy in haemophilia a patients. Thromb Res. 2010; 2: 1449.
  • 38
    Ghosh K, Shetty S, Kulkarni B. Correlation of thromboelastographic patterns with clinical presentation and rationale for use of antifibrinolytics in severe haemophilia patients. Haemophilia. 2007; 6: 7349.
  • 39
    Young G, Zhang R, Miller R, et al. Comparison of kaolin and tissue factor activated thromboelastography in haemophilia. Haemophilia. 2010; 3: 51824.
  • 40
    Brophy D, Martin E, Nolte M, et al. Effect of recombinant factor viia variant (nn1731) on platelet function, clot structure and force onset time in whole blood from healthy volunteers and haemophilia patients. Haemophilia. 2007; 5: 53341.
  • 41
    Brophy D, Martin E, Nolte M, et al. Factor viia analog has marked effects on platelet function and clot kinetics in blood from patients with hemophilia a. Blood Coagul Fibrinolysis. 2010; 6: 53946.
  • 42
    Foley J, Petersen K-U, Rea C, et al. Solulin increases clot stability in whole blood from humans and dogs with hemophilia. Blood. 2012; 15: 36228.
  • 43
    Young G, Blain R, Nakagawa P, et al. Individualization of bypassing agent treatment for haemophilic patients with inhibitors utilizing thromboelastography. Haemophilia. 2006; 6: 598604.
  • 44
    Spiezia L, Meneghetti L, Dalla Valle F, et al. Potential role of thrombelastography in the monitoring of acquired factor viii inhibitor hemophilia a: report on a 78-year-old woman with life-threatening bleedings. Clin Appl Thromb Hemost. 2009; 4: 4706.
  • 45
    van Veen J, Gatt A, Bowyer A, et al. Calibrated automated thrombin generation and modified thromboelastometry in haemophilia a. Thromb Res. 2009; 6: 895901.
  • 46
    Topf HG, Weiss D, Lischetzki G, et al. Evaluation of a modified thromboelastography assay for the screening of von Willebrand disease. Thromb Haemost. 2011; 6: 10919.
  • 47
    Yadegari H, Driesen J, Pavlova A, et al. Mutation distribution in the von Willebrand factor gene related to the different von Willebrand disease (vwd) types in a cohort of vwd patients. Thromb Haemost. 2012; 4: 66271.
  • 48
    Guzman-Reyes S, Osborne C, Pivalizza EG. Thromboelastography for perioperative monitoring in patients with von Willebrand disease. J Clin Anesth. 2012; 2: 1667.
  • 49
    Kasirer-Friede A, Ruggeri Z, Shattil S. Role for adap in shear flow-induced platelet mechanotransduction. Blood. 2010; 11: 227482.
  • 50
    Goncalves I, Nesbitt WS, Yuan Y, et al. Importance of temporal flow gradients and integrin αiibβ3 mechanotransduction for shear activation of platelets. J Biol Chem. 2005; 15: 154307.
  • 51
    Dayananda KM, Singh I, Mondal N, et al. von Willebrand factor self-association on platelet gpibα under hydrodynamic shear: effect on shear-induced platelet activation. Blood. 2010; 19: 39908.
  • 52
    Zhang J, Johnson PC, Popel AS. Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows. Microvasc Res. 2009; 3: 26572.
  • 53
    Sarvepalli D, Schmidtke D, Nollert M. Design considerations for a microfluidic device to quantify the platelet adhesion to collagen at physiological shear rates. Ann Biomed Eng. 2009; 7: 133141.
  • 54
    Whitesides GM, Ostuni E, Takayama S, et al. Soft lithography in biology and biochemistry. Annu Rev Biomed Eng. 2001; 3: 33573.
  • 55
    Xia Y, Whitesides GM. Soft lithography. Annu Rev Mater Sci. 1998; 1: 15384.
  • 56
    Brittain S, Paul K, Zhao XM, et al. Soft lithography and microfabrication. Phys World. 1998; 5: 316.
  • 57
    Hou H, Li Q, Lee G, et al. Deformability study of breast cancer cells using microfluidics. Biomed Microdevices. 2009; 3: 55764.
  • 58
    Rosenbluth MJ, Lam WA, Fletcher DA. Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry. Lab Chip. 2008; 7: 106270.
  • 59
    Tan JL, Tien J, Pirone DM, et al. Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci USA. 2003; 4: 14849.
  • 60
    Dembo M, Wang Y-L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J. 1999; 4: 230716.
  • 61
    Radmacher M, Fritz M, Kacher CM, et al. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J. 1996; 1: 55667.
  • 62
    Rosenbluth MJ, Lam WA, Fletcher DA. Force microscopy of nonadherent cells: a comparison of leukemia cell deformability. Biophys J. 2006; 8: 29943003.
  • 63
    Ashkin A. Acceleration and trapping of particles by radiation pressure. Phys Rev Lett. 1970; 4: 156.
  • 64
    Ashkin A, Dziedzic JM, Bjorkholm JE, et al. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett. 1986; 5: 28890.
  • 65
    Ashkin A, Dziedzic J. Optical trapping and manipulation of viruses and bacteria. Science. 1987; 4795: 151720.
  • 66
    Bustamante C, Bryant Z, Smith SB. Ten years of tension: single-molecule DNA mechanics. Nature. 2003; 6921: 4237.
  • 67
    Mehta AD, Rief M, Spudich JA, et al. Single-molecule biomechanics with optical methods. Science. 1999; 5408: 168995.
  • 68
    Kim J, Zhang C-Z, Zhang X, et al. A mechanically stabilized receptor-ligand flex-bond important in the vasculature. Nature. 2010; 7309: 9925.
  • 69
    Jakobi AJ, Mashaghi A, Tans SJ, et al. Calcium modulates force sensing by the von Willebrand factor a2 domain. Nat Commun. 2011; 2: 385.
  • 70
    Mills JP, Qie L, Dao M, et al. Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mech Chem Biosyst. 2004; 3: 16980.
  • 71
    Dao M, Lim CT, Suresh S. Mechanics of the human red blood cell deformed by optical tweezers. J Mech Phys Solids. 2003; 11–12: 225980.
  • 72
    Moffitt JR, Chemla YR, Smith SB, et al. Recent advances in optical tweezers. Annu Rev Biochem. 2008; 1: 20528.
  • 73
    Henon S, Lenormand G, Richert A, et al. A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys J. 1999; 2: 114551.
  • 74
    Lim CT, Dao M, Suresh S, et al. Large deformation of living cells using laser traps. Acta Mater. 2004; 7: 183745.
  • 75
    Brown CH, Lemuth RF, Hellums JD, et al. Response of human platelets to shear stress. ASAIO J. 1975; 21: 359.
  • 76
    Feng S, Lu X, Reséndiz J, et al. Pathological shear stress directly regulates platelet αiibβ3 signaling. Am J Physiol Cell Physiol. 2006; 6: C134654.
  • 77
    Guthold M, Cho Samuel S. Fibrinogen unfolding mechanisms are not too much of a stretch. Structure. 2011; 11: 15368.
  • 78
    Campbell RA, Aleman M, Gray LD, et al. Flow profoundly influences fibrin network structure: implications for fibrin formation and clot stability in haemostasis. Thromb Haemost. 2010; 6: 12814.
  • 79
    Gersh KC, Edmondson KE, Weisel JW. Flow rate and fibrin fiber alignment. J Thromb Haemost. 2010; 12: 28268.
  • 80
    Varjú I, Sótonyi P, Machovich R, et al. Hindered dissolution of fibrin formed under mechanical stress. J Thromb Haemost. 2011; 5: 97986.
  • 81
    Weiss HJ, Turitto VT, Baumgartner HR. Role of shear rate and platelets in promoting fibrin formation on rabbit subendothelium. Studies utilizing patients with quantitative and qualitative platelet defects. J Clin Invest. 1986; 4: 107282.
  • 82
    Tijburg PN, Ijsseldijk MJ, Sixma JJ, et al. Quantification of fibrin deposition in flowing blood with peroxidase-labeled fibrinogen. High shear rates induce decreased fibrin deposition and appearance of fibrin monomers. Arterioscler Thromb Vasc Biol. 1991; 2: 21120.
  • 83
    Neeves KB, Illing DAR, Diamond SL. Thrombin flux and wall shear rate regulate fibrin fiber deposition state during polymerization under flow. Biophys J. 2010; 7: 134452.
  • 84
    Brown AEX, Litvinov RI, Discher DE, et al. Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science. 2009; 5941: 7414.
  • 85
    Lam W, Chaudhuri O, Crow A, et al. Mechanics and contraction dynamics of single platelets and implications for clot stiffening. Nat Mater. 2011; 1: 616.
  • 86
    Nesbitt W, Westein E, Tovar-Lopez F, et al. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat Med. 2009; 6: 66573.
  • 87
    Chen X, Feng L, Jin H, et al. Quantification of the erythrocyte deformability using atomic force microscopy: correlation study of the erythrocyte deformability with atomic force microscopy and hemorheology. Clin Hemorheol Microcirc. 2009; 3: 24351.
  • 88
    Jin H, Xing X, Zhao H, et al. Detection of erythrocytes influenced by aging and type 2 diabetes using atomic force microscope. Biochem Biophys Res Commun. 2010; 4: 1698702.
  • 89
    Starodubtseva M, Kuznetsova T, Yegorenkov N, et al. Structural and mechanical characteristics of erythrocyte membranes in patients with type 2 diabetes mellitus. Bull Exp Biol Med. 2008; 1: 99103.
  • 90
    Ogawa S, Szlam F, Dunn AL, et al. Evaluation of a novel flow chamber system to assess clot formation in factor viii-deficient mouse and anti-factor ixa-treated human blood. Haemophilia. 2012; 6: 92632.
  • 91
    Hansen R, Tipnis A, White-Adams T, et al. Characterization of collagen thin films for von Willebrand factor binding and platelet adhesion. Langmuir. 2011; 22: 1364858.
  • 92
    Sadler JE. Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem. 1998; 1: 395424.
  • 93
    Tsai H, Sussman I, Nagel R. Shear stress enhances the proteolysis of von Willebrand factor in normal plasma. Blood. 1994; 8: 21719.
  • 94
    Dong J-F, Moake J, Nolasco L, et al. Adamts-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions. Blood. 2002; 12: 40339.
  • 95
    Ruggeri Z, Orje J, Habermann R, et al. Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood. 2006; 6: 190310.
  • 96
    Siedlecki C, Lestini B, Kottke-Marchant K, et al. Shear-dependent changes in the three-dimensional structure of human von Willebrand factor. Blood. 1996; 8: 293950.
  • 97
    Schneider S, Nuschele S, Wixforth A, et al. Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc Natl Acad Sci USA. 2007; 19: 7899903.
  • 98
    Zhang X, Halvorsen K, Zhang C-Z, et al. Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor. Science. 2009; 5932: 13304.
  • 99
    Ying J, Ling Y, Westfield L, et al. Unfolding the a2 domain of von Willebrand factor with the optical trap. Biophys J. 2010; 8: 168593.
  • 100
    Xu A, Springer T. Calcium stabilizes the von Willebrand factor a2 domain by promoting refolding. Proc Natl Acad Sci USA. 2012; 10: 37427.
  • 101
    Liu W, Jawerth LM, Sparks EA, et al. Fibrin fibers have extraordinary extensibility and elasticity. Science. 2006; 5787: 634.
  • 102
    Brown André EX, Litvinov RI, Discher DE, et al. Forced unfolding of coiled-coils in fibrinogen by single-molecule afm. Biophys J. 2007; 5: L3941.
  • 103
    Zhmurov A, Brown A, Litvinov R, et al. Mechanism of fibrin(ogen) forced unfolding. Structure. 2011; 11: 161524.
  • 104
    Nurden AT. Glanzmann thrombasthenia. Orphanet J Rare Dis. 2006; 10.
  • 105
    Carvalho F, Connell S, Miltenberger-Miltenyi G, et al. Atomic force microscopy-based molecular recognition of a fibrinogen receptor on human erythrocytes. ACS Nano. 2010; 8: 460920.
  • 106
    Gunay-Aygun M, Zivony-Elboum Y, Gumruk F, et al. Gray platelet syndrome: natural history of a large patient cohort and locus assignment to chromosome 3p. Blood. 2010; 23: 49905001.
  • 107
    Ramasamy I. Inherited bleeding disorders: disorders of platelet adhesion and aggregation. Crit Rev Oncol Hematol. 2004; 1: 135.
  • 108
    Yago T, Lou J, Wu T, et al. Platelet glycoprotein ibα forms catch bonds with human wt vwf but not with type 2b von Willebrand disease vwf. J Clin Invest. 2008; 9: 3195207.
  • 109
    Auton M, Sedlák E, Marek J, et al. Changes in thermodynamic stability of von Willebrand factor differentially affect the force-dependent binding to platelet gpibalpha. Biophys J. 2009; 2: 61827.
  • 110
    Kumar A, Graham MD. Margination and segregation in confined flows of blood and other multicomponent suspensions. Soft Matter. 2012; 41: 1053648.
  • 111
    Kumar A, Graham MD. Segregation by membrane rigidity in flowing binary suspensions of elastic capsules. Phys Rev E. 2011; 6: 066316.
  • 112
    Kumar A, Graham MD. Mechanism of margination in confined flows of blood and other multicomponent suspensions. Phys Rev Lett. 2012; 10: 108102.
  • 113
    Silvain J, Collet JP, Nagaswami C, et al. Composition of coronary thrombus in acute myocardial infarction. J Am Coll Cardiol. 2011; 12: 135967.
  • 114
    Barabino G, Platt M, Kaul D. Sickle cell biomechanics. Annu Rev Biomed Eng. 2010; 12: 34567.
  • 115
    Trampuz A, Jereb M, Muzlovic I, et al. Clinical review: severe malaria. Crit Care. 2003; 4: 31523.
  • 116
    Suresh S. Mechanical response of human red blood cells in health and disease: some structure-property-function relationships. J Mater Res. 2011; 8: 18717.
  • 117
    Shelby J, White J, Ganesan K, et al. A microfluidic model for single-cell capillary obstruction by plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci USA. 2003; 25: 1461822.
  • 118
    Hou HW, Bhagat AA, Chong AG, et al. Deformability based cell margination–a simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip. 2010; 19: 260513.
  • 119
    Maciaszek JL, Andemariam B, Lykotrafitis G. Microelasticity of red blood cells in sickle cell disease. J Strain Analysis. 2011; 5: 36879.
  • 120
    Suresh S, Spatz J, Mills JP, et al. Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 2005; 1: 1530.
  • 121
    Brandão M, Fontes A, Barjas-Castro M, et al. Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease. Eur J Haematol. 2003; 4: 20711.
  • 122
    Wan J, Ristenpart WD, Stone HA. Dynamics of shear-induced atp release from red blood cells. Proc Natl Acad Sci USA. 2008; 43: 164327.
  • 123
    Stafford N, Pink A, White A, et al. Mechanisms involved in adenosine triphosphate–induced platelet aggregation in whole blood. Arterioscler Thromb Vasc Biol. 2003; 10: 192833.
  • 124
    Kita A, Sakurai Y, Myers DR, et al. Microenvironmental geometry guides platelet adhesion and spreading: a quantitative analysis at the single cell level. PLoS ONE. 2011; 10: e26437.
  • 125
    Hansen RR, Wufsus AR, Barton ST, et al. High content evaluation of shear dependent platelet function in a microfluidic flow assay. Ann Biomed Eng. 2013; 2: 25062.
  • 126
    Van de Walle A, Fontenot J, Spain TG, et al. The role of fibrinogen spacing and patch size on platelet adhesion under flow. Acta Biomater. 2012; 11: 408091.