SEARCH

SEARCH BY CITATION

References

  • 1
    Sarbassov DD, Ali SM, Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 2006; 22: 15968.
  • 2
    Pereira MJ, Palming J, Rizell M, et al. mTOR inhibition with rapamycin causes impaired insulin signalling and glucose uptake in human subcutaneous and omental adipocytes. Mol Cell Endocrinol. 2012; 355: 96105.
  • 3
    Brown EJ, Albers MW, Shin TB, et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. 1994; 369: 7568.
  • 4
    Sarbassov DD, Guertin DA, Ali SM, et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005; 307: 1098101.
  • 5
    Sarbassov DD, Peterson CA. Insulin receptor substrate-1 and phosphatidylinositol 3-kinase regulate extracellular signal-regulated kinase-dependent and -independent signaling pathways during myogenic differentiation. Mol Endocrinol. 1998; 12: 18708.
  • 6
    Laudanski P, Kowalczuk O, Klasa-Mazurkiewicz D, et al. Selective gene expression profiling of mTOR-associated tumor suppressor and oncogenes in ovarian cancer. Folia Histochem Cytobiol. 2011; 49: 31724.
  • 7
    Liu L, Chen L, Luo Y, et al. Rapamycin inhibits IGF-1 stimulated cell motility through PP2A pathway. PLoS ONE. 2010; 5: e10578.
  • 8
    Hsieh AC, Costa M, Zollo O, et al. Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer Cell. 2010; 17: 24961.
  • 9
    Rossi G, Cavazza A, Graziano P, et al. mTOR/p70S6K in diffuse idiopathic pulmonary neuroendocrine cell hyperplasia. Am J Respir Crit Care Med. 2012; 185: 341.
  • 10
    Vignot S, Faivre S, Aguirre D, et al. mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol. 2005; 16: 52537.
  • 11
    Donnelly JG, Soldin SJ. Partial characterization of a 52 kDa CsA/FK506/rapamycin binding protein. Clin Biochem. 1994; 27: 36772.
  • 12
    Deivanayagam CC, Carson M, Thotakura A, et al. Structure of FKBP12.6 in complex with rapamycin. Acta Crystallogr D Biol Crystallogr. 2000; 56: 26671.
  • 13
    Kozany C, Marz A, Kress C, et al. Fluorescent probes to characterise FK506-binding proteins. ChemBioChem. 2009; 10: 140210.
  • 14
    Facchinetti V, Ouyang W, Wei H, et al. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J. 2008; 27: 193243.
  • 15
    Rosado JA, Pariente JA, Salido GM, et al. SERCA2b activity is regulated by cyclophilins in human platelets. Arterioscler Thromb Vasc Biol. 2010; 30: 41925.
  • 16
    Bilmen JG, Wootton LL, Michelangeli F. The inhibition of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase by macrocyclic lactones and cyclosporin A. Biochem J. 2002; 366: 25563.
  • 17
    Guerini D, Wang X, Li L, et al. Calcineurin controls the expression of isoform 4CII of the plasma membrane Ca2+ pump in neurons. J Biol Chem. 2000; 275: 370612.
  • 18
    Genazzani AA, Carafoli E, Guerini D. Calcineurin controls inositol 1,4,5-trisphosphate type 1 receptor expression in neurons. Proc Natl Acad Sci USA. 1999; 96: 5797801.
  • 19
    Yee KW, Zeng Z, Konopleva M, et al. Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res. 2006; 12: 516573.
  • 20
    Yost SE, Byrne R, Kaplan B. Transplantation: mTOR inhibition in kidney transplant recipients. Nat Rev Nephrol. 2011; 7: 5535.
  • 21
    Mulay AV, Cockfield S, Stryker R, et al. Conversion from calcineurin inhibitors to sirolimus for chronic renal allograft dysfunction: a systematic review of the evidence. Transplantation. 2006; 82: 115362.
  • 22
    Lippi U, Schinella M, Modena N, et al. Unpredictable effects of K3 EDTA on mean platelet volume. Am J Clin Pathol. 1987; 87: 3913.
  • 23
    Rink TJ, Sage SO. Calcium signaling in human platelets. Annu Rev Physiol. 1990; 52: 43149.
  • 24
    Sage SO, Brownlow SL, Rosado JA. TRP channels and calcium entry in human platelets. Blood. 2002; 100: 42456; author reply 6-7.
  • 25
    Redondo PC, Jardin I, Lopez JJ, et al. Intracellular Ca2+ store depletion induces the formation of macromolecular complexes involving hTRPC1, hTRPC6, the type II IP3 receptor and SERCA3 in human platelets. Biochim Biophys Acta. 2008; 1783: 116376.
  • 26
    Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985; 260: 344050.
  • 27
    Robinson M, MacHin S, Mackie I, et al. In vivo biotinylation studies: specificity of labelling of reticulated platelets by thiazole orange and mepacrine. Br J Haematol. 2000; 108: 85964.
  • 28
    Pihusch R, Wegner H, Salat C, et al. Flow cytometric findings in platelets of patients following allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2002; 30: 3817.
  • 29
    Deb S, Patra HK, Lahiri P, et al. Multistability in platelets and their response to gold nanoparticles. Nanomedicine. 2011; 7: 37684.
  • 30
    Whiss PA, Andersson RG, Srinivas U. Modulation of P-selectin expression on isolated human platelets by an NO donor assessed by a novel ELISA application. J Immunol Methods. 1997; 200: 13543.
  • 31
    Rosado JA, Redondo PC, Sage SO, et al. Store-operated Ca2+ entry: vesicle fusion or reversible trafficking and de novo conformational coupling? J Cell Physiol. 2005; 205: 2629.
  • 32
    Rosado JA, Redondo PC, Salido GM, et al. Cleavage of SNAP-25 and VAMP-2 impairs store-operated Ca2+ entry in mouse pancreatic acinar cells. Am J Physiol Cell Physiol. 2005; 288: C21421.
  • 33
    Redondo PC, Harper MT, Rosado JA, et al. A role for cofilin in the activation of store-operated calcium entry by de novo conformational coupling in human platelets. Blood. 2006; 107: 9739.
  • 34
    Ekim B, Magnuson B, Acosta-Jaquez HA, et al. mTOR kinase domain phosphorylation promotes mTORC1 signaling, cell growth, and cell cycle progression. Mol Cell Biol. 2011; 31: 2787801.
  • 35
    Vazquez-Martin A, Cufi S, Oliveras-Ferraros C, et al. Raptor, a positive regulatory subunit of mTOR complex 1, is a novel phosphoprotein of the rDNA transcription machinery in nucleoli and chromosomal nucleolus organizer regions (NORs). Cell Cycle. 2011; 10: 314052.
  • 36
    Lopez JJ, Redondo PC, Salido GM, et al. Two distinct Ca2+ compartments show differential sensitivity to thrombin, ADP and vasopressin in human platelets. Cell Signal. 2006; 18: 37381.
  • 37
    Cavallini L, Coassin M, Alexandre A. Two classes of agonist-sensitive Ca2+ stores in platelets, as identified by their differential sensitivity to 2,5-di-(tert-butyl)-1,4-benzohydroquinone and thapsigargin. Biochem J. 1995; 310(Pt 2): 44952.
  • 38
    Kovacs T, Berger G, Corvazier E, et al. Immunolocalization of the multi-sarco/endoplasmic reticulum Ca2+ ATPase system in human platelets. Br J Haematol. 1997; 97: 192203.
  • 39
    Ramstrom AS, Fagerberg IH, Lindahl TL. A flow cytometric assay for the study of dense granule storage and release in human platelets. Platelets. 1999; 10: 1538.
  • 40
    Coppinger JA, Cagney G, Toomey S, et al. Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood. 2004; 103: 2096104.
  • 41
    Berna MJ, Tapia JA, Sancho V, et al. Gastrointestinal growth factors and hormones have divergent effects on Akt activation. Cell Signal. 2009; 21: 62238.
  • 42
    Moore SF, Hunter RW, Hers I. mTORC2 protein complex-mediated Akt (Protein Kinase B) Serine 473 Phosphorylation is not required for Akt1 activity in human platelets [corrected]. J Biol Chem. 2011; 286: 2455360.
  • 43
    Ogawa A, Firth AL, Yao W, et al. Inhibition of mTOR attenuates store-operated Ca2+ entry in cells from endarterectomized tissues of patients with chronic thromboembolic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2009; 297: L66676.
  • 44
    Ogawa A, Firth AL, Smith KA, et al. PDGF enhances store-operated Ca2+ entry by upregulating STIM1/Orai1 via activation of Akt/mTOR in human pulmonary arterial smooth muscle cells. Am J Physiol Cell Physiol. 2012; 302: C40511.
  • 45
    Wu Q, Huang KS, Chen M, et al. Rapamycin enhances platelet aggregation induced by adenosine diphosphate in vitro. Platelets. 2009; 20: 42831.
  • 46
    Thoreen CC, Kang SA, Chang JW, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem. 2009; 284: 802332.
  • 47
    Aslan JE, Tormoen GW, Loren CP, et al. S6K1 and mTOR regulate Rac1-driven platelet activation and aggregation. Blood. 2011; 118: 312936.
  • 48
    Law DA, Nannizzi-Alaimo L, Phillips DR. Outside-in integrin signal transduction. Alpha IIb beta 3-(GP IIb IIIa) tyrosine phosphorylation induced by platelet aggregation. J Biol Chem. 1996; 271: 108115.
  • 49
    Weyrich AS, Denis MM, Schwertz H, et al. mTOR-dependent synthesis of Bcl-3 controls the retraction of fibrin clots by activated human platelets. Blood. 2007; 109: 197583.
  • 50
    Hong JC, Kahan BD. Sirolimus-induced thrombocytopenia and leukopenia in renal transplant recipients: risk factors, incidence, progression, and management. Transplantation. 2000; 69: 208590.
  • 51
    Johnson EM, Zimmerman J, Duderstadt K, et al. A randomized, double-blind, placebo-controlled study of the safety, tolerance, and preliminary pharmacokinetics of ascending single doses of orally administered sirolimus (rapamycin) in stable renal transplant recipients. Transplant Proc. 1996; 28: 987.
  • 52
    Raslova H, Baccini V, Loussaief L, et al. Mammalian target of rapamycin (mTOR) regulates both proliferation of megakaryocyte progenitors and late stages of megakaryocyte differentiation. Blood. 2006; 107: 230310.
  • 53
    Chanprasert S, Geddis AE, Barroga C, et al. Thrombopoietin (TPO) induces c-myc expression through a PI3K- and MAPK-dependent pathway that is not mediated by Akt, PKCzeta or mTOR in TPO-dependent cell lines and primary megakaryocytes. Cell Signal. 2006; 18: 12128.
  • 54
    Liu ZJ, Italiano J Jr, Ferrer-Marin F, et al. Developmental differences in megakaryocytopoiesis are associated with up-regulated TPO signaling through mTOR and elevated GATA-1 levels in neonatal megakaryocytes. Blood. 2011; 117: 410617.