SEARCH

SEARCH BY CITATION

References

  • 1
    Singh V, Devgan L, Bhat S, et al. The pathogenesis of burn wound conversion. Ann Plast Surg. 2007; 59: 10915.
  • 2
    Noel G, Guo X, Wang Q, et al. Postburn monocytes are the major producers of TNF-alpha in the heterogeneous splenic macrophage population. Shock. 2007; 27: 3129.
  • 3
    Enkhbaatar P, Traber L, Traber D. Interleukin-1 in thermal injury: what is next? Crit Care Med. 2007; 35: 12123.
  • 4
    Jeschke MG, Chinkes DL, Finnerty CC, et al. Pathophysiologic response to severe burn injury. Ann Surg. 2008; 248: 387401.
  • 5
    Jones SB, Muthu K, Shankar R, et al. Significance of the adrenal and sympathetic response to burn injury. In: Herndon DN, editor. Total burn care. Philadelphia, PA: Saunders Elsevier; 2007. pp. 34360.
  • 6
    Costantini TW, Bansal V, Peterson CY, et al. Efferent vagal nerve stimulation attenuates gut barrier injury after burn: modulation of intestinal occluding expression. J Trauma. 2010; 68: 134954.
  • 7
    Gustafsson AB, Gottlieb RA. Mechanism of apoptosis in the heart. J Clin Immunol. 2003; 23: 44759.
  • 8
    Katare RG, Ando M, Kakinuma Y, et al. Vagal nerve stimulation prevents reperfusion injury through inhibition of opening of mitochondrial permeability transition pore independent of the bradycardiac effect. J Thorac Cardiovasc Surg. 2009; 137: 22331.
  • 9
    Costantini TW, Bansal V, Krzyzaniak M, et al. Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells. Am J Physiol Gastrointest Liver Physiol. 2010; 299: 130818.
  • 10
    Downing SE, Lee JC. Effects of insulin on experimental catecholamine cardiomyopathy. Am J Pathol. 1978; 93: 33952.
  • 11
    Iwata H, Goto H, Tanaka H, et al. Effect of maternal age on mitochondrial DNA copy number, ATP content and IVF outcome of bovine oocytes. Reprod Fertil Dev. 2011; 23: 42432.
  • 12
    Honda HM, Ping P. Mitochondrial permeability transition in cardiac cell injury and death. Cardiovasc Drugs Ther. 2006; 20: 42532.
  • 13
    Costantini TW, Krzyzaniak M, Cheadle GA, et al. Targeting α-7 nicotinic acetylcholine receptor in the enteric nervous system: a cholinergic agonist prevents gut barrier failure after severe burn injury. Am J Pathol. 2012; 181: 47886.
  • 14
    Pavlov VA, Tracey KJ. The cholinergic anti-inflammatory pathway. Brain Behav Immunol. 2005; 19: 4939.
  • 15
    Cho H, Hwang JY, Kim D, et al. Acetylcholine induced phosphatidylinositol 4, 5-bisphosphate depletion does not cause short-term desensitization of G protein-gated inwardly rectifying K+ current in mouse atrial myocytes. J Biol Chem. 2002; 277: 277427.
  • 16
    Shi H, Wang H, Lu Y, et al. Choline modulates cardiac membrane repolarization by activating an M3 muscarinic receptor and its coupled K+ channel. J Membr Biol. 1999; 169: 5564.
  • 17
    Yang B, Lin H, Xu C, et al. Choline produces cytoprotective effects against ischemic myocardial injuries: evidence for the role of cardiac M3 subtype muscarinic acetylcholine receptors. Cell Physiol Biochem. 2005; 16: 16374.
  • 18
    Shi H, Wang H, Li D, et al. Differential alterations of receptor densities of three muscarinic acetylcholine receptor subtypes and current densities of the corresponding K+ channels in canine atria with atrial fibrillation induced by experimental congestive heart failure. Cell Physiol Biochem. 2004; 14: 3140.
  • 19
    Abramochkin DV, Tapilina SV, Sukhova GS, et al. Functional M3 cholinoreceptors are present in pacemaker and working myocardium of murine heart. Pflugers Arch. 2012; 463: 5239.
  • 20
    Miyamoto S, Rubio M, Sussman MA. Nuclear and mitochondrial signaling Akts in cardiomyocytes. Cardiovasc Res. 2009; 82: 27285.
  • 21
    Matsui T, Tao J, del Monte F, et al. Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation. 2001; 104: 3305.
  • 22
    del Peso L, Gonzalez-Garcia M, Page C, et al. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science. 1997; 278: 6879.
  • 23
    Ahmad N, Wang Y, Haider KH, et al. Cardiac protection by mitoKATP channels is dependent on Akt translocation from cytosol to mitochondria during late preconditioning. Am J Physiol Heart Circ Physiol. 2006; 290: 24028.
  • 24
    Imahashi K, Schneider MD, Steenbergen C, et al. Transgenic expression of Bcl-2 modulates energy metabolism, prevents cytosolic acidification during ischemia, and reduces ischemia/reperfusion injury. Circ Res. 2004; 95: 73441.
  • 25
    Zhu L, Yu Y, Chua BH, et al. Regulation of sodium-calcium exchange and mitochondrial energetics by Bcl-2 in the heart of transgenic mice. J Mol Cell Cardiol. 2001; 33: 213544.