SEARCH

SEARCH BY CITATION

References

  • 1
    Pozniak AL, Coyne KM, Miller RF, et al. British HIV Association guidelines for the treatment of TB/HIV coinfection 2011. HIV Med. 2011; 12: 51724.
  • 2
    Padmapriyadarsini C, Narendran G, Swaminathan S. Diagnosis & treatment of tuberculosis in HIV co-infected patients. Indian J Med Res. 2011; 134: 85065.
  • 3
    S Rodrigues Ddo S, de C Cunha RM, Kallas EG, et al. Distribution of naive and memory/effector CD4+ T lymphocytes and expression of CD38 on CD8+ T lymphocytes in AIDS patients with tuberculosis. Braz J Infect Dis. 2003; 7: 1615.
  • 4
    de Castro Cunha RM, Kallas EG, Rodrigues DS, et al. Interferon-gamma and tumour necrosis factor-alpha production by CD4+ T and CD8+ T lymphocytes in AIDS patients with tuberculosis. Clin Exp Immunol 2005; 140: 4917.
  • 5
    Sutherland R, Yang H, Scriba TJ, et al. Impaired IFN-gamma-secreting capacity in mycobacterial antigen-specific CD4 T cells during chronic HIV-1 infection despite long-term HAART. AIDS. 2006; 20: 8219.
  • 6
    Brighenti S, Andersson J. Induction and regulation of CD8+ cytolytic T cells in human tuberculosis and HIV infection. Biochem Biophys Res Commun. 2010; 396: 507.
  • 7
    Georghiou SB, Magana M, Garfein RS, et al. Evaluation of genetic mutations associated with Mycobacterium tuberculosis resistance to amikacin, kanamycin and capreomycin: a systematic review. PLoS ONE. 2012; 7: e33275.
  • 8
    Marahatta SB, Gautam S, Dhital S, et al. katG (SER 315 THR) gene mutation in isoniazid resistant Mycobacterium tuberculosis. Kathmandu Univ Med J (KUMJ). 2011; 9: 1923.
  • 9
    Malhotra S, Cook VJ, Wolfe JN, et al. A mutation in Mycobacterium tuberculosis rpoB gene confers rifampin resistance in three HIV-TB cases. Tuberculosis (Edinb). 2010; 90: 1527.
  • 10
    Lopez-Alvarez R, Badillo-Lopez C, Cerna-Cortes JF, et al. First insights into the genetic diversity of Mycobacterium tuberculosis isolates from HIV-infected Mexican patients and mutations causing multidrug resistance. BMC Microbiol. 2010; 10: 82.
  • 11
    Pennings PS. Standing genetic variation and the evolution of drug resistance in HIV. PLoS Comput Biol. 2012; 8: e1002527.
  • 12
    Sepúlveda-Torres Ldel C, De La Rosa A, Cumba L, et al. Prevalence of drug resistance and associated mutations in a population of HIV-1(+) Puerto Ricans: 2006-2010. AIDS Res Treat. 2012; 2012: 934041.
  • 13
    Saini S, Bhalla P, Gautam H, et al. Resistance-associated mutations in HIV-1 among patients failing first-line antiretroviral therapy. J Int Assoc Physicians AIDS Care (Chic). 2012; 11: 2039.
  • 14
    Moore CB, John M, James IR, et al. Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science. 2002; 296: 143943.
  • 15
    Allen TM, Altfeld M, Geer SC, et al. Selective escape escape from CD8+ T-cell responses represents a major driving force of human immunodeficiency virus type 1 (HIV-1) sequence diversity and reveals constraints on HIV-1 evolution. J Virol. 2005; 79: 1323949.
  • 16
    Feeney ME, Tang Y, Roosevelt KA, et al. Immune escape precedes breakthrough human immunodeficiency virus type 1 viremia and broadening of the cytotoxic T-lymphocyte response in an HLAB27-positive long-term-nonprogressing child. J Virol. 2004; 78: 892730.
  • 17
    Pawlowski A, Jansson M, Sköld M, et al. Tuberculosis and HIV co-infection. PLoS Pathog. 2012; 8: e1002464.
  • 18
    Kapp M, Tan SM, Einsele H, et al. Adoptive immunotherapy of HCMV infection. Cytotherapy. 2007; 9: 699711.
  • 19
    Woodworth JS, Wu Y, Behar SM. Mycobacterium tuberculosis-specific CD8+ T cells require perforin to kill target cells and provide protection in vivo. J Immunol. 2008; 181: 8595603.
  • 20
    Duffy D, Dawoodji A, Agger EM, et al. Immunological memory transferred with CD4 T cells specific for tuberculosis antigens Ag85B-TB10.4: persisting antigen enhances protection. PLoS ONE. 2009; 4: e8272.
  • 21
    Brodie SJ, Patterson BK, Lewinsohn DA, et al. HIV-specific cytotoxic T lymphocytes traffic to lymph nodes and localize at sites of HIV replication and cell death. J Clin Invest. 2000; 105: 140717.
  • 22
    Ochi T, Fujiwara H, Okamoto S, et al. Novel adoptive T-cell immunotherapy using a WT1-specific TCR vector encoding silencers for endogenous TCRs shows marked antileukemia reactivity and safety. Blood. 2011; 118: 1495503.
  • 23
    Morgan RA, Dudley ME, Wunderlich JR, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006; 314: 1269.
  • 24
    Schub A, Schuster IG, Hammerschmidt W, et al. CMV-specific TCR-transgenic T cells for immunotherapy. J Immunol. 2009; 183: 681930.
  • 25
    Gottschalk S, Heslop HE, Rooney CM. Adoptive immunotherapy for EBV-associated malignancies. Leuk Lymphoma. 2005; 46: 110.
  • 26
    Luo W, Zhang XB, Huang YT, et al. Development of genetically engineered CD4+ and CD8+ T cells expressing TCRs specific for a M. tuberculosis 38-kDa antigen. J Mol Med. 2011; 89: 90313.
  • 27
    Joseph A, Zheng JH, Follenzi A, et al. Lentiviral vectors encoding human immunodeficiency virus type 1 (HIV-1)-specific T-cell receptor genes efficiently convert peripheral blood CD8 T lymphocytes into cytotoxic T lymphocytes with potent in vitro and in vivo HIV-1-specific inhibitory activity. J Virol. 2008; 82: 307889.
  • 28
    Hofmann C, Höfflin S, Hückelhoven A, et al. Human T cells expressing two additional receptors (TETARs) specific for HIV-1 recognize both epitopes. Blood. 2011; 118: 51747.
  • 29
    Sommermeyer D, Uckert W. Minimal amino acid exchange in human TCR constant regions fosters improved function of TCR gene-modified T cells. J Immunol. 2010; 184: 622331.
  • 30
    Sebestyén Z, Schooten E, Sals T, et al. Human TCR that incorporate CD3ξ induce highly preferred pairing between TCRα and β chains following gene transfer. J Immunol. 2008; 180: 773646.
  • 31
    Szymczak AL, Workman CJ, Wang Y, et al. Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat Biotechnol. 2004; 22: 58994.
  • 32
    Szymczak-Workman AL, Vignali KM, Vignali DA. Design and construction of 2A peptide-linked multicistronic vectors. Cold Spring Harb Protoc. 2012; 2012: 199204.
  • 33
    Donnelly ML, Luke G, Mehrotra A, et al. Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip’. J Gen Virol. 2001; 82: 101325.
  • 34
    Shao L, Feng W, Sun Y, et al. Generation of iPS cells using defined factors linked via the self-cleaving 2A sequences in a single open reading frame. Cell Res. 2009; 19: 296306.
  • 35
    Carey BW, Markoulaki S, Hanna J, et al. Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci USA. 2009; 106: 15762.
  • 36
    Batchu RB, Moreno AM, Szmania S, et al. High-level expression of cancer/testis antigen NY-ESO-1 and human granulocyte-macrophage colony-stimulating factor in dendritic cells with a bicistronic retroviral vector. Hum Gene Ther. 2003; 14: 133345.
  • 37
    Bohnenkamp HR, Noll T. Development of a standardized protocol for reproducible generation of matured monocyte-derived dendritic cells suitable for clinical application. Cytotechnology. 2003; 42: 12131.
  • 38
    Lawn SD, Butera ST, Shinnick TM. Tuberculosis unleashed: the impact of human immunodeficiency virus infection on the host granulomatous response to Mycobacterium tuberculosis. Microbes Infect. 2002; 4: 63546.
  • 39
    Law KF, Jagirdar J, Weiden MD, et al. Tuberculosis in HIV-positive patients: cellular response and immune activation in the lung. Am J Respir Crit Care Med. 1996; 153: 137784.
  • 40
    Zhang M, Gong J, Iyer DV, et al. T cell cytokine responses in persons with tuberculosis and human immunodeficiency virus infection. J Clin Invest. 1994; 94: 243542.
  • 41
    Lieberman J, Skolnik PR, Parkerson GR 3rd, et al. Safety of autologous, ex vivo-expanded human immunodeficiency virus (HIV)-specific cytotoxic T-lymphocyte infusion in HIV-infected patients. Blood. 1997; 90: 2196206.
  • 42
    Brodie SJ, Lewinsohn DA, Patterson BK, et al. In vivo migration and function of transferred HIV-1-specific cytotoxic T cells. Nat Med. 1999; 5: 3441.
  • 43
    Kitsukawa K, Higa F, Takushi Y, et al. Adoptive immunotherapy for pulmonary tuberculosis caused by multi-resistant bacteria using autologous peripheral blood leucocytes sensitized with killed Mycobacterium tuberculosis bacteria. Kekkaku. 1991; 66: 56375.
  • 44
    Kikkawa K. Adoptive immunotherapy of refractory pulmonary tuberculosis using sensitized autologous lymphocytes. Kekkaku. 1992; 67: 6846.
  • 45
    Wiker HG, Harboe M. The antigen 85 complex: a major secreted product of M. tuberculosis. Microbiol Rev. 1992; 56: 64861.
  • 46
    Belisle JT, Vissa VD, Sievert T, et al. Role of the major antigen of Mycobacterium tuberculosis in cell wall biosynthesis. Science. 1997; 276: 14202.
  • 47
    Andersen P. Effective vaccination of mice against Mycobacterium tuberculosis infection with a soluble mixture of secreted mycobacterial proteins. Infect Immun. 1994; 62: 253644.
  • 48
    Baldwin SL, D'Souza C, Roberts AD, et al. Evaluation of new vaccines in the mouse and guinea pig model of tuberculosis. Infect Immun. 1998; 66: 29519.
  • 49
    Geluk A, van Meijgaarden KE, Franken KL, et al. Identification of major epitopes of Mycobacterium tuberculosis AG85B that are recognized by HLA-A*0201-restricted CD8+ T cells in HLA-transgenic mice and humans. J Immunol. 2000; 165: 646371.
  • 50
    Borrow P, Lewicki H, Hahn BH, et al. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol. 1994; 68: 610310.
  • 51
    Safrit JT, Andrews CA, Zhu T, et al. Characterization of human immunodeficiency virus type 1-specific cytotoxic T lymphocyte clones isolated during acute seroconversion: recognition of autologous sequences within a conserved immunodominant epitope. J Exp Med. 1994; 179: 46372.
  • 52
    Dupuis M, Kundu SK, Merigan TC. Characterization of HLA-A 0201-restricted cytotoxic T cell epitopes in conserved regions of the HIV type 1 gp160 protein. J Immunol. 1995; 155: 22329.
  • 53
    Kiszka I, Kmieciak D, Gzyl J, et al. Effect of the V3 loop deletion of envelope glycoprotein on cellular responses and protection against challenge with recombinant vaccinia virus expressing gp160 of primary human immunodeficiency virus type 1 isolates. J Virol. 2002; 76: 422232.
  • 54
    McKinney DM, Skvoretz R, Livingston BD, et al. Recognition of variant HIV-1 epitopes from diverse viral subtypes by vaccine-induced CTL. J Immunol. 2004; 173: 194150.
  • 55
    Roszik J, Sebestyén Z, Govers C, et al. T-cell synapse formation depends on antigen recognition but not CD3 interaction: studies with TCR:ζ, a candidate transgene for TCR gene therapy. Eur J Immunol. 2011; 41: 128897.
  • 56
    Viola A, Lanzavecchia A. T cell activation determined by T cell receptor number and tunable thresholds. Science. 1996; 273: 1046.
  • 57
    Schmitt TM, Ragnarsson GB, Greenberg PD. T cell receptor gene therapy for cancer. Hum Gene Ther. 2009; 20: 12408.
  • 58
    Okamoto S, Mineno J, Ikeda H, et al. Improved expression and reactivity of transduced tumor-specific TCRs in human lymphocytes by specific silencing of endogenous TCR. Cancer Res. 2009; 69: 900311.