SEARCH

SEARCH BY CITATION

References

  • 1
    Izzo JG, Malhotra U, Wu T, et al. Association of activated transcription factor nuclear factor kappab with chemoradiation resistance and poor outcome in esophageal carcinoma. J Clin Oncol. 2006; 24: 74854.
  • 2
    Amin KA, Mohamed BM, El-Wakil MAM, et al. Impact of breast cancer and combination chemotherapy on oxidative stress, hepatic and cardiac markers. J Breast Cancer. 2012; 15: 30612.
  • 3
    Vidimar V, Meng X, Klajner M, et al. Induction of caspase 8 and reactive oxygen species by ruthenium-derived anticancer compounds with improved water solubility and cytotoxicity. Biochem Pharmacol. 2012; 84: 142836.
  • 4
    Barrera G. Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol. 2012; 137289.
  • 5
    Hu H, Luo M, Du X, et al. Up-regulated manganese superoxide dismutase expression increases apoptosis resistance in human esophageal squamous cell carcinomas. Chin Med J. 2007; 120: 20928.
  • 6
    Yoshioka A, Miyata H, Doki Y, et al. The activation of Akt during preoperative chemotherapy for esophageal cancer correlates with poor prognosis. Oncol Rep. 2008; 19: 1099107.
  • 7
    Hamano R, Miyata H, Yamasaki M, et al. Overexpression of miR-200c induces chemoresistance in esophageal cancers mediated through activation of the Akt signaling pathway. Clin Cancer Res. 2011; 17: 302938.
  • 8
    Chang E, Donahue J, Smith A, et al. Loss of p53, rather than beta-catenin overexpression, induces survivin-mediated resistance to apoptosis in an esophageal cancer cell line. J Thorac Cardiovasc Surg. 2010; 140: 22532.
  • 9
    Schiffman SC, Li Y, Xiao D, et al. The resistance of esophageal adenocarcinoma to bile salt insult is associated with manganese superoxide dismutase expression. J Surg Res. 2011; 171: 62330.
  • 10
    Tandon VR, Sharma S, Mahajan A, et al. Oxidative Stress: a novel strategy in cancer treatment. New Horiz. 2005; 7: 13.
  • 11
    Kikuchi K, Soundararajan A, Zarzabal LA, et al. Protein kinase C iota as a therapeutic target in alveolar rhabdomyosarcoma. Oncogene. 2013; 32: 28695.
  • 12
    Foote KM, Blades K, Cronin A, et al. Discovery of 4-{4-[(3R)-3-methylmorpholin-4-yl]-6-[1-(methylsulfonyl)cyclopropyl]pyrimidin-2-yl}-1H-indole (AZ20): a potent and selective inhibitor of ATR protein kinase with monotherapy in vivo antitumor activity. J Med Chem. 2013; 56: 212538.
  • 13
    Posch C, Moslehi H, Feeney L, et al. Combined targeting of MEK and PI3K/mTOR effector pathways is necessary to effectively inhibit NRAS mutant melanoma in vitro and in vivo. Proc Natl Acad Sci USA. 2013; 110: 401520.
  • 14
    Antoon JW, Bratton MR, Guillot LM, et al. Inhibition of p38-MAPK alters SRC coactivation and estrogen receptor phosphorylation. Cancer Biol Ther. 2012; 13: 102633.
  • 15
    Eke I, Schneider L, Förster C, et al. EGFR/JIP-4/JNK2 signaling attenuates cetuximab-mediated radiosensitization of squamous cell carcinoma cells. Cancer Res. 2013; 73: 297306.
  • 16
    Ferrao PT, Bukczynska EP, Johnstone RW, et al. Efficacy of CHK inhibitors as single agents in MYC-driven lymphoma cells. Oncogene. 2012; 31: 166172.
  • 17
    Poehlmann A, Roessner A. Importance of DNA damage checkpoints in the pathogenesis of human cancers. Pathol Res Pract. 2010; 206: 591601.
  • 18
    Morotomi-Yano K, Akiyama H, Yano K. Nanosecond pulsed electric fields activate MAPK pathways in human cells. Arch Biochem Biophys. 2011; 515: 99106.
  • 19
    Kardassis D, Papakosta P, Pardali K, et al. c-Jun transactivates the promoter of the human p21(WAF1/Cip1) gene by acting as a superactivator of the ubiquitous transcription factor Sp1. J Biol Chem. 1999; 274: 2957281.
  • 20
    Cmielová J, Rezáčová M. p21Cip1/Waf1 protein and its function based on a subcellular localization [corrected]. J Cell Biochem. 2011; 112: 35026.
  • 21
    Hai T, Curran T. Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci USA. 1991; 88: 37204.
  • 22
    Li S, Ezhevsky S, Dewing A, et al. Radiation sensitivity and tumor susceptibility in ATM phospho-mutant ATF2 mice. Genes Cancer. 2010; 1: 31630.
  • 23
    Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer. 2009; 9: 40014.
  • 24
    Boonstra JJ, van der Velden AW, Beerens ECW, et al. Mistaken identity of widely used esophageal adenocarcinoma cell line TE-7. Cancer Res. 2007; 67: 79968001.
  • 25
    Habold C, Poehlmann A, Bajbouj K, et al. Trichostatin A causes p53 to switch oxidative-damaged colorectal cancer cells from cell cycle arrest into apoptosis. J Cell Mol Med. 2008; 12: 60721.
  • 26
    Poehlmann A, Habold C, Walluscheck D, et al. Cutting edge: Chk1 directs senescence and mitotic catastrophe in recovery from G2 checkpoint arrest. J Cell Mol Med. 2011; 15: 152841.
  • 27
    Bajbouj K, Poehlmann A, Kuester D, et al. Identifiaction of phosphorylated p38 as a novel DAPK-interacting partner during TNFalpha-induced apoptosis in colorectal tumor cells. Am J Pathol. 2009; 175: 55770.
  • 28
    Schneider-Stock R, Diab-Assef M, Rohrbeck A, et al. 5-Aza-cytidine is a potent inhibitor of DNA methyltransferase 3a and induces apoptosis in HCT-116 colon cancer cells via Gadd45- and p53-dependent mechanisms. J Pharmacol Exp Ther. 2005; 312: 52536.
  • 29
    Gozdecka M, Breitwieser W. The roles of ATF2 (activating transcription factor 2) in tumorigenesis. Biochem Soc Trans. 2012; 40: 2304.
  • 30
    Plummer JL, Smith BR, Sies H, et al. Chemical depletion of glutathione in vivo. Methods Enzymol. 1981; 77: 509.
  • 31
    Krance SM, Keng PC, Palis J, et al. Transient glutathione depletion determines terminal differentiation in HL-60 cells. Oxid Med Cell Longev. 2010; 3: 5360.
  • 32
    Zhao Y, Li R, Xia W, et al. Bid integrates intrinsic and extrinsic signaling in apoptosis induced by alpha-tocopheryl succinate in human gastric carcinoma cells. Cancer Lett. 2010; 288: 429.
  • 33
    Viswanath V, Wu Y, Boonplueang R, et al. Caspase-9 activation results in downstream caspase-8 activation and bid cleavage in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease. J Neurosci. 2001; 21: 951928.
  • 34
    Barnas C, Martel-Planche G, Furukawa Y, et al. Inactivation of the p53 protein in cell lines derived from human esophageal cancers. Int J Cancer. 1997; 71: 7987.
  • 35
    Lewis JS, Vijayanathan V, Thomas TJ, et al. Activation of cyclin D1 by estradiol and spermine in MCF-7 breast cancer cells: a mechanism involving the p38 MAP kinase and phosphorylation of ATF-2. Oncol Res. 2005; 15: 11328.
  • 36
    Nakamura T, Okuyama S, Okamoto S, et al. Down-regulation of the cyclin-A promoter in differentiating human embryonal carcinoma-cells is mediated by depletion of Atf-1 and Atf-2 in the complex at the Atf/Cre site. Exp Cell Res. 1995; 216: 42230.
  • 37
    Shimizu M, Nomura Y, Suzuki K, et al. Activation of the rat cyclin a promoter by ATF2 and Jun family members and its suppression by ATF4. Exp Cell Res. 1998; 239: 93103.
  • 38
    Lau E, Ronai ZA. ATF2 - at the crossroad of nuclear and cytosolic functions. J Cell Sci. 2012; 125: 281524.
  • 39
    Maekawa T, Sano Y, Shinagawa T, et al. ATF-2 controls transcription of Maspin and GADD45 alpha genes independently from p53 to suppress mammary tumors. Oncogene. 2008; 27: 104554.
  • 40
    Ma Q, Li X, Vale-Cruz D, et al. Activating transcription factor 2 controls Bcl-2 promoter activity in growth plate chondrocytes. J Cell Biochem. 2007; 101: 47787.
  • 41
    Ronai Z, Yang YM, Fuchs SY, et al. ATF2 confers radiation resistance to human melanoma cells. Oncogene. 1998; 16: 52331.
  • 42
    Bhoumik A, Huang T, Ivanov V, et al. An ATF2-derived peptide sensitizes melanomas to apoptosis and inhibits their growth and metastasis. J Clin Invest. 2002; 110: 64350.
  • 43
    Bhoumik A, Gangi L, Ronai Z. Inhibition of melanoma growth and metastasis by ATF2-derived peptides. Cancer Res. 2004; 64: 822230.
  • 44
    Bhoumik A, Ronai Z. Inhibition of tumor growth and metastasis by ATF2-derived peptides. Patent. 2009; EP 1 809 315 B1.
  • 45
    Gupta S, Campbell D, Derijard B, et al. Transcription factor Atf2 regulation by the Jnk signal-transduction pathway. Science. 1995; 267: 38993.
  • 46
    Chen T, Stephens PA, Middleton FK, et al. Targeting the S and G2 checkpoint to treat cancer. Drug Discov Today. 2012; 17: 194202.
  • 47
    Fu L, Balasubramanian M, Shan J, et al. Auto-activation of c-JUN gene by amino acid deprivation of hepatocellular carcinoma cells reveals a novel c-JUN-mediated signaling pathway. J Biol Chem. 2011; 286: 3672438.
  • 48
    van Dam H, Duyndam M, Rottier R, et al. Heterodimer formation of cJun and ATF-2 is responsible for induction of c-jun by the 243 amino acid adenovirus E1A protein. EMBO J. 1993; 12: 47987.
  • 49
    Bhoumik A, Jones N, Ronai Z. Transcriptional switch by activating transcription factor 2-derived peptide sensitizes melanoma cells to apoptosis and inhibits their tumorigenicity. Proc Nat Acad Sci USA. 2004; 101: 42227.
  • 50
    Kawasaki H, Schiltz L, Chiu R, et al. ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature. 2000; 405: 195200.