SEARCH

SEARCH BY CITATION

References

  • 1
    Allessie MA, Boyden PA, Camm AJ, et al. Pathophysiology and prevention of atrial fibrillation. Circulation. 2001; 103: 76977.
  • 2
    Chen LY, Shen W-K. Epidemiology of atrial fibrillation: a current perspective. Heart Rhythm. 2007; 4(3 Suppl): S16.
  • 3
    Dun W, Yagi T, Rosen MR, et al. Calcium and potassium currents in cells from adult and aged canine right atria. Cardiovasc Res. 2003; 58: 52634.
  • 4
    Anyukhovsky EP, Sosunov EA, Plotnikov A, et al. Cellular electrophysiologic properties of old canine atria provide a substrate for arrhythmogenesis. Cardiovasc Res. 2002; 54: 4629.
  • 5
    Anyukhovsky EP, Sosunov EA, Chandra P, et al. Age-associated changes in electrophysiologic remodeling: a potential contributor to initiation of atrial fibrillation. Cardiovasc Res. 2005; 66: 35363.
  • 6
    Chou CC, Nihei M, Zhou S, et al. Intracellular calcium dynamics and anisotropic reentry in isolated canine pulmonary veins and left atrium. Circulation. 2005; 111: 288997.
  • 7
    Josephson IR, Guia A, Stern MD, et al. Alterations in properties of L-type Ca2+ channels in aging heart. J Mol Cell Cardiol. 2002; 34: 297308.
  • 8
    Sosunov EA, Anyukhovsky EP, Rosen MR. The adrenergic–cholinergic interaction that modulates repolarization in the atrium is altered with aging. J Cardiovasc Electrophysiol. 2002; 13: 3749.
  • 9
    Nattel S, Maguy A, Le Bouter S, et al. Arrhythmogenic ion-channel remodelling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev. 2007; 87: 42556.
  • 10
    Van Gelder IC, Brundel BJ, Henning RH, et al. Alterations in gene expression of proteins involved in the calcium handling in patients with atrial fibrillation. J Cardiovasc Electrophysiol. 1999; 10: 55260.
  • 11
    Brundel BJ, Van Gelder IC, Henning RH, et al. Gene expression of proteins influencing the calcium homeostasis in patients with persistent and paroxysmal atrial fibrillation. Cardiovasc Res. 1999; 42: 44354.
  • 12
    Vest JA, Wehrens XH, Reiken SR, et al. Defective cardiac ryanodine receptor regulation during atrial fibrillation. Circulation. 2005; 111: 202532.
  • 13
    EI-Armouche A, Boknik P, Eschenhagen T, et al. Molecular determinants of altered Ca2+ handling in human chronic atrial fibrillation. Circulation. 2006; 114: 67080.
  • 14
    Neef S, Dybkova N, Sossalla S, et al. CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation. Circ Res. 2010; 106: 113444.
  • 15
    Yue L, Feng J, Gaspo R, et al. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res. 1997; 81: 51225.
  • 16
    Bosch RF, Nattel S. Cellular electrophysiology of atrial fibrillation. Cardiovasc Res. 2002; 54: 25969.
  • 17
    Verheule S, Wilson E, Banthia S, et al. Direction-dependent conduction abnormalities in a canine model of atrial fibrillation due to chronic atrial dilatation. Am J Physiol Heart Circ Physiol. 2004; 287: H63444.
  • 18
    Spach MS, Heidlage JF, Dolber PC, et al. Mechanism of origin of conduction disturbances in aging human atrial bundles: experimental and model study. Heart Rhythm. 2007; 4: 17585.
  • 19
    Wijffels MC, Kirchhof CJ, Dorland R, et al. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation. 1995; 92: 195468.
  • 20
    Willems R, Holemans P, Ector H, et al. Mind the model: effect of instrumentation on inducibility of atrial fibrillation in a sheep model. J Cardiovasc Electrophysiol. 2002; 13: 627.
  • 21
    Nattel S, Khairy P, Schram G. Arrhythmogenic ionic remodelling: adaptive responses with maladaptive consequences. Trends Cardiovasc Med. 2001; 11: 295301.
  • 22
    Baba S, Dun W, Hirose M, et al. Sodium current function in adult and aged canine atrial cells. Am J Physiol Heart Circ Physiol. 2006; 291: H75661.
  • 23
    King LM, Opie LH. Glucose and glycogen utilisation in myocardial ischemia– changes in metabolism and consequences for the myocyte. Mol Cell Biochem. 1998; 180: 326.
  • 24
    O'Rourke B, Ramza BM, Marban E. Oscillations of membrane current and excitability driven by metabolic oscillations in heart cells. Science. 1994; 265: 9626.
  • 25
    Depre C, Rider M, Hue L. Mechanisms of control of heart glycolysis. Eur J Biochem. 1998; 258: 27790.
  • 26
    Cortassa S, Aon MA, Marban E, et al. An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys J. 2003; 84: 273455.
  • 27
    Mihm MJ, Yu F, Carnes CA, et al. Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation. 2001; 104: 17480.
  • 28
    Strand MA, Louis CF, Mickelson JR. Phosphorylation of porcine skeletal and cardiac muscle sarcoplasmic reticulum ryanodine receptor. Biochim Biophys Acta. 1993; 1175: 31926.
  • 29
    Witcher DR, Kovacs RJ, Schulman H, et al. Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity. J Biol Chem. 1991; 266: 1114452.
  • 30
    Hain J, Onoue H, Mayrleitner M, et al. Phosphorylation modulates the function of the calcium release channel of sarcoplasmic reticulum from cardiac muscle. J Biol Chem. 1995; 270: 207481.