SEARCH

SEARCH BY CITATION

References

  • 1
    Lo YM, Lo ES, Watson N, et al. Two-way cell traffic between mother and fetus: biologic and clinical implications. Blood. 1996; 88: 43905.
  • 2
    Herzenberg LA, Bianchi DW, Schroder J, et al. Fetal cells in the blood of pregnant women: detection and enrichment by fluorescence-activated cell sorting. Proc Natl Acad Sci USA. 1979; 76: 14535.
  • 3
    Potter JF, Schoeneman M. Metastasis of maternal cancer to the placenta and fetus. Cancer. 1970; 25: 3808.
  • 4
    Dildy GA 3rd, Moise KJ Jr, Carpenter RJ Jr, et al. Maternal malignancy metastatic to the products of conception: a review. Obstet Gynecol Surv. 1989; 44: 53540.
  • 5
    Jackisch C, Louwen F, Schwenkhagen A, et al. Lung cancer during pregnancy involving the products of conception and a review of the literature. Arch Gynecol Obstet. 2003; 268: 6977.
  • 6
    Alexander A, Samlowski WE, Grossman D, et al. Metastatic melanoma in pregnancy: risk of transplacental metastases in the infant. J Clin Oncol. 2003; 21: 217986.
  • 7
    Wang T, Hamann W, Hartge R. Structural aspects of a placenta from a case of maternal acute lymphatic leukaemia. Placenta. 1983; 4: 18595.
  • 8
    Harpold TL, Wang MY, McComb JG, et al. Maternal lung adenocarcinoma metastatic to the scalp of a fetus. Case report. Pediatr Neurosurg. 2001; 35: 3942.
  • 9
    Rothman LA, Cohen CJ, Astarloa J. Placental and fetal involvement by maternal malignancy: a report of rectal carcinoma and review of the literature. Am J Obstet Gynecol. 1973; 116: 102334.
  • 10
    Liu J, Guo L. Intraplacental choriocarcinoma in a term placenta with both maternal and infantile metastases: a case report and review of the literature. Gynecol Oncol. 2006; 103: 114751.
  • 11
    Wang HS, Hung SC, Peng ST, et al. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells. 2004; 22: 13307.
  • 12
    Mitchell KE, Weiss ML, Mitchell BM, et al. Matrix cells from Wharton's jelly form neurons and glia. Stem Cells. 2003; 21: 5060.
  • 13
    Chao KC, Chao KF, Fu YS, et al. Islet-like clusters derived from mesenchymal stem cells in Wharton's Jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS ONE. 2008; 3: e1451.
  • 14
    Campard D, Lysy PA, Najimi M, et al. Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocyte-like cells. Gastroenterology. 2008; 134: 83348.
  • 15
    Anzalone R, Lo Iacono M, Loria T, et al. Wharton's jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem Cell Rev. 2011; 7: 34263.
  • 16
    La Rocca G, Lo Iacono M, Corsello T, et al. Human Wharton's jelly mesenchymal stem cells maintain the expression of key immunomodulatory molecules when subjected to osteogenic, adipogenic and chondrogenic differentiation in vitro: new perspectives for cellular therapy. Curr Stem Cell Res Ther. 2013; 8: 10013.
  • 17
    Lu LL, Liu YJ, Yang SG, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica. 2006; 91: 101726.
  • 18
    Cho PS, Messina DJ, Hirsh EL, et al. Immunogenicity of umbilical cord tissue derived cells. Blood. 2008; 111: 4308.
  • 19
    Rachakatla RS, Marini F, Weiss ML, et al. Development of human umbilical cord matrix stem cell-based gene therapy for experimental lung tumors. Cancer Gene Ther. 2007; 14: 82835.
  • 20
    Wang XY, Lan Y, He WY, et al. Identification of mesenchymal stem cells in aorta-gonad-mesonephros and yolk sac of human embryos. Blood. 2008; 111: 243643.
  • 21
    Fong CY, Chak LL, Biswas A, et al. Human Wharton's jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev. 2011; 7: 116.
  • 22
    Lee RH, Yoon N, Reneau JC, et al. Preactivation of human MSCs with TNF-alpha enhances tumor-suppressive activity. Cell Stem Cell. 2012; 11: 82535.
  • 23
    Loos M, Hedderich DM, Friess H, et al. B7-h3 and its role in antitumor immunity. Clin Dev Immunol. 2010; 2010: 683875.
  • 24
    Anzalone R, Corrao S, Lo Iacono M, et al. Isolation and characterization of CD276+/HLA-E+ human subendocardial mesenchymal stem cells from chronic heart failure patients: analysis of differentiative potential and immunomodulatory markers expression. Stem Cells Dev. 2013; 22: 117.
  • 25
    de Kruijf EM, Sajet A, van Nes JG, et al. HLA-E and HLA-G expression in classical HLA class I-negative tumors is of prognostic value for clinical outcome of early breast cancer patients. J Immunol. 2010; 185: 74529.
  • 26
    Weiss ML, Anderson C, Medicetty S, et al. Immune properties of human umbilical cord Wharton's jelly-derived cells. Stem Cells. 2008; 26: 286574.
  • 27
    La Rocca G, Anzalone R, Corrao S, et al. Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochem Cell Biol. 2009; 131: 26782.
  • 28
    Chao KC, Yang HT, Chen MW. Human umbilical cord mesenchymal stem cells suppress breast cancer tumourigenesis through direct cell-cell contact and internalization. J Cell Mol Med. 2012; 16: 180315.
  • 29
    Ma Y, Hao X, Zhang S, et al. The in vitro and in vivo effects of human umbilical cord mesenchymal stem cells on the growth of breast cancer cells. Breast Cancer Res Treat. 2012; 133: 47385.
  • 30
    Ayuzawa R, Doi C, Rachakatla RS, et al. Naive human umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in vitro and in vivo. Cancer Lett. 2009; 280: 317.