• 1
    Jemal A, Siegel R, Xu J, et al. Cancer statistics. CA Cancer J Clin. 2010; 60: 277300.
  • 2
    Vincent A, Herman J, Schulick R, et al. Pancreatic cancer. Lancet. 2011; 378: 60720.
  • 3
    Matthaios D, Zaroqoulidis P, Balgouranidou I, et al. Molecular pathogenesis of pancreatic cancer and clinical perspectives. Oncology. 2011; 81: 25972.
  • 4
    Burris HA 3rd, Moore MJ, Andersen J, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997; 15: 240313.
  • 5
    Conroy T, Desseiqne F, Ychou M, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011; 12: 181725.
  • 6
    Cunninqham D, Chau I, Stocken DD, et al. Phase III randomized comparison of gemcitabine versus gemcitabine plus capecitabine in patients with advanced pancreatic cancer. J Clin Oncol. 2009; 27: 55138.
  • 7
    Hong YB, Kim JS, Yi YW, et al. Exploring protein kinase inhibitors: potentiating gemcitabine efficacy in pancreatic cancer. Pancreas. 2012; 41: 4968.
  • 8
    Kim YJ, Hong YB, Cho CH, et al. Exploring protein kinase inhibitors: unveiling gemcitabine resistance in pancreatic cancer. Pancreas. 2012; 41: 8045.
  • 9
    Duong HQ, Kim HJ, Kang HJ, et al. ZSTK474, a PI3K inhibitor, suppresses proliferation and sensitizes human pancreatic adenocarcinoma cells to gemcitabine. Oncol Rep. 2012; 27: 1828.
  • 10
    Kim YJ, Hwang JS, Hong YB, et al. Transforming growth factor beta receptor I sensitize drug-resistant pancreatic cancer cells to gemcitabine. Anticancer Res. 2012; 32: 799806.
  • 11
    Azorsa DO, Gonzales IM, Basu GD, et al. Synthetic lethal RNAi screening identifies sensitizing targets for gemcitabine therapy in pancreatic cancer. J Transl Med. 2009; 7: 43.
  • 12
    Parsels LA, Morgan MA, Tanska DM, et al. Gemcitabine sensitization by checkpoint kinase 1 inhibition correlates with inhibition of a Rad51 DNA damage response in pancreatic cancer cells. Mol Cancer Ther. 2009; 8: 4554.
  • 13
    Morgan MA, Parsels LA, Zhao L, et al. Mechanism of radiosensitization by the Chk1/2 inhibitor AZD7762 involves abrogation of the G2 checkpoint and inhibition of homologous recombination DNA repair. Cancer Res. 2010; 70: 497281.
  • 14
    Venkatesha VA, Parsels LA, Parsels JD, et al. Sensitization of pancreatic cancer stem cells to gemcitabine by Chk1 inhibition. Neoplasia. 2012; 14: 51925.
  • 15
    Jobson AG, Cardellina JH 2nd, Scudiero D, et al. Identification of a bis-guanylhydrazone [4,4′-diacetyldiphenylurea-bis(guanylhydrazone); NSC 109555] as a novel chemotype for inhibition of Chk2 kinase. Mol Pharmacol. 2007; 72: 87684.
  • 16
    Garrett MD, Collins I. Anticancer therapy with checkpoint inhibitors: what, where and when? Trends Pharmacol Sci. 2011; 32: 30816.
  • 17
    van der Wilt CL, Kroep JR, Bergman AM, et al. The role of deoxycytidine kinase in gemcitabine cytotoxicity. Adv Exp Med Biol. 2000; 486: 28790.
  • 18
    Merriman RL, Hertel LW, Schultz RM, et al. Comparison of the antitumor activity of gemcitabine and ara-C in a panel of human breast, colon, lung and pancreatic xenograft models. Invest New Drugs. 1996; 14: 2437.
  • 19
    Bergman AM, Eijk PP, Ruiz van Haperen VW, et al. In vivo induction of resistance to gemcitabine results in increased expressionof ribonucleotide reductase subunit M1 as the major determinant. Cancer Res. 2005; 65: 95106.
  • 20
    Yu Q, Rose JH, Zhang H, et al. Antisense inhibition of Chk2/hCds1 expression attenuates DNA damage-induced S and G2 checkpoints and enhances apoptotic activity in HEK-293 cells. FEBS Lett. 2001; 505: 712.
  • 21
    Pires IM, Ward TH, Drive C. Oxaliplatin responses in colorectal cancer cells are modulated by CHK2 inhibitors. Br J Pharmacol. 2010; 159: 132638.
  • 22
    Liang X, Guo Y, Fiqq WB, et al. The role of wild-type p53 in cisplatin-induced Chk2 phosphorylation and the inhibition of platinum resistance with a Chk2 inhibitor. Chemother Res Pract. 2011; 2011: 715469.
  • 23
    Gorgoulis VG, Vassiliou LV, Karakaidos P, et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature. 2005; 434: 90713.
  • 24
    Bartkova J, Horejsí Z, Koed K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005; 434: 86470.
  • 25
    Miyasaka Y, Nagai E, Yamaguchi H, et al. The role of the DNA damage checkpoint pathway in intraductal papillary mucinous neoplasms of the pancreas. Clin Cancer Res. 2007; 13: 43717.
  • 26
    Pommier Y, Sordet O, Rao VA, et al. Targeting Chk2 kinase: molecular interaction maps and therapeutic rationale. Curr Pharm Des. 2005; 11: 285572.
  • 27
    Pommier Y, Weinstein JN, Aladjem MI, et al. Chk2 molecular interaction map and rationale for Chk2 inhibitor. Clin Cancer Res. 2006; 12: 265761.
  • 28
    Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs and enzyme inhibitors. Adv Enz Regul. 1984; 22: 2755.
  • 29
    Duong HQ, Hwang JS, Kim HJ, et al. BML-275, an AMPK inhibitor, induces DNA damage, G2/M arrest and apoptosis in human pancreatic cancer cells. Int J Oncol. 2012; 41: 222736.
  • 30
    Carlessi L, Buscemi G, Larson G, et al. Biochemical and cellular characterization of VRX0466617, a novel and selective inhibitor for the checkpoing kinase Chk2. Mol Cancer Ther. 2007; 6: 93544.
  • 31
    Jobson AG, Lountos GT, Lorenzi PL, et al. Cellular inhibition of checkpoint kinase 2 (Chk2) and Potentiation of camptothecins and radiation by the novel Chk2 inhibitor PV1019 [7-nitro-1H-indole-2-carboxylic acid {4-[1-(duanidinohydrazone)-ethyl]-phenyl}-amide]. J Pharmacol Exp Ther. 2009; 331: 81626.
  • 32
    Anderson VE, Walton MI, Eve PD, et al. CCT241533 is a potent and selective inhibitor of CHK2 that potentiates the cytotoxicity of PARP inhibitors. Cancer Res. 2011; 71: 46372.
  • 33
    Donadelli M, Costanzo C, Beqhelli S, et al. Synergistic inhibition of pancreatic adenocarcinoma cell growth by trichostatin A and gemcitabine. Biochim Biophys Acta. 2007; 1773: 1095106.
  • 34
    Théard D, Coisy M, Ducommun B, et al. Etoposide and adriamycin but not Genistein can activate the checkpoint kinase Chk2 independently of ATM/ATR. Biochem Biophys Res Commun. 2001; 289: 1199204.
  • 35
    Fan JR, Peng AL, Chen HC, et al. Cellular processing pathways contribute to the activation of etoposide-induced DNA damage responses. DNA Repair. 2008; 7: 45263.
  • 36
    Karnitz LM, Flatten KS, Wagner JM, et al. Gemcitabine-induced activation of checkpoint signaling pathways that affect tumor cell survival. Mol Pharmacol. 2005; 68: 163644.
  • 37
    Pabla N, Huang S, Mi QS, et al. ATR-Chk2 signaling in p53 activation and DNA damage response during cisplatin-induced apoptosis. J Biol Chem. 2008; 283: 657283.
  • 38
    Gogineni VR, Nalla AK, Gupta R, et al. Chk2-mediated G2/M cell cycle arrest maintains radiation resistance in malignant memingioma cells. Cancer Lett. 2011; 313: 6475.
  • 39
    Ahn JY, Schwarz JK, Piwnica-Worms H, et al. Threonine 68 phosphorylation by ataxia telangiectasia mutated is required for efficient activation of Chk2 in response to ionizing radiation. Cancer Res. 2000; 60: 59346.
  • 40
    Lee CH, Chung JH. The hCds1 (Chk2)-FHA domain is essential for a chain of phosphorylation events on hCds1 that is induced by ionizing radiation. J Biol Chem. 2001; 276: 3053741.
  • 41
    Bond-Smith G, Banga N, Hammond TM, et al. Pancreatic adenocarcinoma. BMJ. 2012; 344: e2476.
  • 42
    Maehara S, Tanaka S, Shimada M, et al. Selenoprotein P, as a predictor for evaluating gemcitabine resistance in human pancreatic cancer cells. Int J Cancer. 2004; 112: 1849.
  • 43
    Chibber S, Farhan M, Hassan I, et al. Novel aspect of chemotherapy in treatment of cancer. Tumor Biol. 2012; 33: 7016.
  • 44
    Ito K, Hirao A, Arai F, et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature. 2004; 431: 9971002.
  • 45
    Morgan MA, Parsels LA, Parsels JD, et al. The relationship of premature mitosis to cytotoxicity in response to checkpoint abrogation and antimetabolite treatment. Cell Cycle. 2006; 5: 19838.
  • 46
    Parsels LA, Qian Y, Tanska DM, et al. Assessment of Chk1 phosphorylation as a pharmacodynamic biomarker of Chk1 inhibition. Clin Cancer Res. 2011; 17: 370615.