SEARCH

SEARCH BY CITATION

References

  • 1
    Devidas M, Anderson JR. Considerations in the design of clinical trials for pediatric acute lymphoblastic leukemia. Clin Investig. 2013; doi: 10.4155/cli.13.71.
  • 2
    Cho WC. Emerging techniques in molecular detection of circulating tumor cells. Expert Rev Mol Diagn. 2014; 14: 1314.
  • 3
    Teuffel O, Dettling M, Cario G, et al. Gene expression profiles and risk stratification in childhood acute lymphoblastic leukemia. Haematologica. 2004; 89: 8018.
  • 4
    Fogelstrand L, Staffas A, Wasslavik C, et al. Prognostic implications of mutations in NOTCH1 and FBXW7 in childhood T-all treated according to the NOPHO ALL-1992 and ALL-2000 protocols. Pediatr Blood Cancer. 2014; 61: 42430.
  • 5
    Papaemmanuil E, Rapado I, Li Y, et al. RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat Genet. 2014; 46: 11625.
  • 6
    Tirado CA, Shabsovich D, Denicola M, et al. A case of pediatric B-Lymphoblastic leukemia presenting with a t(9;12)(p24;q11.2) involving JAK2 and concomitant MLL rearrangement with apparent insertion at 6q27. Biomark Res. 2013; 1: 31.
  • 7
    Perez-Andreu V, Roberts KG, Harvey RC, et al. Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse. Nat Genet. 2013; 12: 14948.
  • 8
    Mosor M, Ziółkowska-Suchanek I, Nowicka K, et al. Germline variants in MRE11/RAD50/NBN complex genes in childhood leukemia. BMC Cancer. 2013; 13: 457.
  • 9
    Zheng JF, Dong SS, Wang Q, et al. Deletions and rearrangements of PAX5 gene in B-lineage acute lymphoblastic leukemia. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2013; 30: 54952.
  • 10
    Barbosa TC, Andrade FG, Lopes BA, et al. Impact of mutations in FLT3, PTPN11 and RAS genes on the overall survival of pediatric B cell precursor acute lymphoblastic leukemia in Brazil. Leuk Lymphoma. 2014; doi:10.3109/10428194.2013.847934 [Epub ahead of print].
  • 11
    Perez-Garcia A, Ambesi-Impiombato A, Hadler M, et al. Genetic loss of SH2B3 in acute lymphoblastic leukemia. Blood. 2013; 122: 242532.
  • 12
    Sherborne AL, Hemminki K, Kumar R, et al. Rationale for an international consortium to study inherited genetic susceptibility to childhood acute lymphoblastic leukemia. Haematologica. 2011; 7: 104954.
  • 13
    Jones RL, Judson IR. The development and application of imatinib. Expert Opin Drug Saf. 2005; 4: 18391.
  • 14
    López E, Muñoz SR, Pascual JL, et al. Relevant phosphoproteomic and mass spectrometry: approaches useful in clinical research. Clin Transl Med. 2012; 1: 2.
  • 15
    Vakana E, Arslan AD, Szilard A, et al. Regulatory effects of Sestrin 3 (SESN3) in BCR-ABL expressing cells. PLoS ONE. 2013; 8: e78780.
  • 16
    Vitagliano O, Addeo R, D'Angelo V, et al. The Bcl-2/Bax and Ras/Raf/MEK/ERK signaling pathways: implications in pediatric leukemia pathogenesis and new prospects for therapeutic approaches. Expert Rev Hematol. 2013; 6: 58797.
  • 17
    Hallek M. Chronic lymphocytic leukemia: 2013 update on diagnosis, risk stratification and treatment. Am J Hematol. 2013; 88: 80316.
  • 18
    Patel C, Stenke L, Varma S, et al. Multidrug resistance in relapsed acute myeloid leukemia: Evidence of biological heterogeneity. Cancer. 2013; 119: 307683.
  • 19
    Szczepanek J, Styczyński J, Haus O, et al. Relapse of acute lymphoblastic leukemia in children in the context of microarray analyses. Arch Immunol Ther Exp. 2011; 59: 618.
  • 20
    Irving JA, Bloodworth L, Bown NP, et al. Loss of heterozygosity in childhood acute lymphoblastic leukemia detected by genome-wide microarray single nucleotide polymorphism analysis. Cancer Res. 2005; 65: 30538.
  • 21
    Ito C, Kumagai M, Manabe A, et al. Hyperdiploid acute lymphoblastic leukemia with 51 to 65 chromosomes: a distinct biological entity with a marked propensity to undergo apoptosis. Blood. 1999; 93: 31520.
  • 22
    Campana D, Coustan-Smith E, Manabe A, et al. Human B-cell progenitors and bone marrow microenvironment. Hum Cell. 1996; 4: 31722.
  • 23
    Kumagai M, Manabe A, Coustan-Smith E, et al. Use of stroma-supported cultures of leukemic cells to assess antileukemic drugs. II. Potent cytotoxicity of 2-chloro-deoxyadenosine in acute lymphoblastic leukemia. Leukemia. 1994; 7: 111623.
  • 24
    Manabe A, Yi T, Kumagai M, et al. Use of stroma-supported cultures of leukemic cells to assess antileukemic drugs. I. Cytotoxicity of interferon alpha in acute lymphoblastic leukemia. Leukemia. 1993; 12: 19905.
  • 25
    Campana D, Manabe A, Evans WE. Stroma-supported immunocytometric assay (SIA): a novel method for testing the sensitivity of acute lymphoblastic leukemia cells to cytotoxic drugs. Leukemia. 1993; 3: 4828.
  • 26
    Stryckmans P. Relationship between parameters of cell proliferation in acute human leukemia and the effect on those cells of antileukemic drugs in vivo. Verh K Vlaam Acad Geneeskd Belg. 1972; 34: 436585.
  • 27
    Ghosh PB, Whitehouse MW. Potential antileukemic and immunosuppressive drugs. Preparation and in vitro pharmacological acitivity of some benzo-2,1,3-oxadiazoles (benzofurazans) and their N-oxides (benzofuroxans). J Med Chem. 1968; 2: 30511.
  • 28
    Scavullo C, Servida F, Lecis D, et al. Single-agent Smac-mimetic compounds induce apoptosis in B chronic lymphocytic leukaemia (B-CLL). Leuk Res. 2013; 37: 80915.
  • 29
    Malm J, Fehniger TE, Danmyr P, et al. Developments in biobanking workflow standardization providing sample integrity and stability. J Proteomics. 2013; 95: 3845.
  • 30
    Thingholm TE, Jensen ON, Robinson PJ, et al. SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics. 2008; 4: 66171.
  • 31
    Evans C, Noirel J, Ow SY, et al. An insight into iTRAQ: where do we stand now? Anal Bioanal Chem. 2012; 404: 101127.
  • 32
    Trimpin S, Wang B, Lietz CB, et al. New ionization processes and applications for use in mass spectrometry. Crit Rev Biochem Mol Biol. 2013; 48: 40929.
  • 33
    Skogstrand K, Ekelund CK, Thorsen P, et al. Effects of blood sample handling procedures on measurable inflammatory markers in plasma, serum and dried blood spot samples. J Immunol Methods. 2008; 336: 7884.
  • 34
    Picotti P, Aebersold R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods. 2012; 9: 55566.
  • 35
    Hegedus CM, Gunn L, Skibola CF, et al. Proteomic analysis of childhood leukemia. Leukemia. 2005; 19: 17138.
  • 36
    Cho WC. Research progress in SELDI-TOF MS and its clinical applications. Sheng Wu Gong Cheng Xue Bao. 2006; 22: 8716.
  • 37
    Achkar WA, Wafa A, Ali BY, et al. A rare chronic myeloid leukemia case with Philadelphia chromosome, BCR-ABL e13a3 transcript and complex translocation involving four different chromosomes. Oncol Lett. 2010; 1: 797800.
  • 38
    Bennour A, Sennana H, Laatiri MA, et al. Saad A.A masked BCR/ABL rearrangement in a case of chronic myeloid leukemia with translocation t(3;9)(p14;q34). Cancer Genet Cytogenet. 2008; 1: 724.
  • 39
    Takeuchi M, Katayama Y, Okamura A, et al. Chronic myeloid leukemia with a rare variant BCR-ABL translocation: t(9;22;21)(q34;q11.2;q11.2). Cancer Genet Cytogenet. 2007; 179: 857.
  • 40
    Quintas-Cardama A, Cortes J. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood. 2009; 113: 161930.
  • 41
    Branford S, Hughes TP. Mutational analysis in chronic myeloid leukemia: when and what to do? Curr Opin Hematol. 2011; 18: 1116.
  • 42
    Pizzirani D, Roberti M, Grimaudo S, et al. Identification of biphenyl-based hybrid molecules able to decrease the intracellular level of Bcl-2 protein in Bcl-2 overexpressing leukemia cells. J Med Chem. 2009; 52: 693640.
  • 43
    Turroni S, Tolomeo M, Mamone G, et al. A Natural-Like Synthetic Small Molecule Impairs Bcr-Abl Signaling Cascades and Induces Megakaryocyte Differentiation in Erythroleukemia Cells. PLoS ONE. 2013; 8: e57650.
  • 44
    Hu J, Lin M, Liu T, et al. DIGE-based proteomic analysis identifies nucleophosmin/B23 and nucleolin C23 as over-expressed proteins in relapsed/refractory acute leukemia. Leuk Research. 2011; 35: 108792.
  • 45
    Jiang N, Kham SK, Koh GS. Suang Lim JY, Ariffin H, Chew FT, Yeoh AE. Identification of prognostic protein biomarkers in childhood acute lymphoblastic leukemia (ALL). J Proteomics. 2011; 74: 84357.
  • 46
    Shi L, Zhang J, Wu P, et al. Discovery and identification of potential biomarkers of pediatric acute lymphoblastic leukemia. Proteome Sci. 2009; 16: 7.
  • 47
    Casado P, Alcolea MP, Iorio F, et al. Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors. Genome Biol. 2013; 14: R37.
  • 48
    Hjelle SM, Forthun RB, Haaland I, et al. Clinical proteomics of myeloid leukemia. Genome Med. 2010; 2: 41.
  • 49
    Braoudaki M, Lambrou GI, Vougas K, et al. Protein biomarkers distinguish between high- and low-risk pediatric acute lymphoblastic leukemia in a tissue specific manner. J Hematol Oncol. 2013; 6: 52.
  • 50
    Jaffe JD, Wang Y, Chan HM, et al. Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia. Nat Genet. 2013; 11: 138691.
  • 51
    Barretina J, Caponigro G, Stransky N, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012; 483: 6037.