• 1
    Kehat I, Gepstein A, Spira A, et al. High-resolution electrophysiological assessment of human embryonic stem cell-derived cardiomyocytes: a novel in vitro model for the study of conduction. Circ Res. 2002; 91: 65961.
  • 2
    Mummery C, Ward D, van den Brink CE, et al. Cardiomyocyte differentiation of mouse and human embryonic stem cells. J Anat. 2002; 200: 23342.
  • 3
    Mummery C, Ward-van OD, Doevendans P, et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation. 2003; 107: 273340.
  • 4
    Braam SR, Tertoolen L, van de Stolpe A, et al. Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Res. 2010; 4: 10716.
  • 5
    Braam SR, Tertoolen L, Casini S, et al. Repolarization reserve determines drug responses in human pluripotent stem cell derived cardiomyocytes. Stem Cell Res. 2013; 10: 4856.
  • 6
    He JQ, January CT, Thomson JA, et al. Human embryonic stem cell-derived cardiomyocytes: drug discovery and safety pharmacology. Expert Opin Drug Discov. 2007; 2: 73953.
  • 7
    Liang P, Lan F, Lee AS, et al. Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation. 2013; 127: 167791.
  • 8
    Chowdhury D, Tangutur AD, Khatua TN, et al. A proteomic view of isoproterenol induced cardiac hypertrophy: prohibitin identified as a potential biomarker in rats. J Transl Med. 2013; 11: 130.
  • 9
    Foldes G, Mioulane M, Wright JS, et al. Modulation of human embryonic stem cell-derived cardiomyocyte growth: a testbed for studying human cardiac hypertrophy? J Mol Cell Cardiol. 2011; 50: 36776.
  • 10
    Simpson P. Stimulation of hypertrophy of cultured neonatal rat heart cells through an alpha 1-adrenergic receptor and induction of beating through an alpha 1- and beta 1-adrenergic receptor interaction. Evidence for independent regulation of growth and beating. Circ Res. 1985; 56: 88494.
  • 11
    McMullen JR, Jennings GL. Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin Exp Pharmacol Physiol. 2007; 34: 25562.
  • 12
    Moretti A, Bellin M, Welling A, et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med. 2010; 363: 1397409.
  • 13
    Lan F, Lee A, Liang P, et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells. Cell Stem Cell. 2013; 12: 10113.
  • 14
    Carvajal-Vergara X, Sevilla A, D'Souza SL, et al. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature. 2010; 465: 80812.
  • 15
    Burridge PW, Thompson S, Millrod MA, et al. A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PLoS ONE. 2011; 6: e18293.
  • 16
    Ng ES, Davis R, Stanley EG, et al. A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies. Nat Protoc. 2008; 3: 76876.
  • 17
    Ren Y, Lee MY, Schliffke S, et al. Small molecule Wnt inhibitors enhance the efficiency of BMP-4-directed cardiac differentiation of human pluripotent stem cells. J Mol Cell Cardiol. 2011; 51: 2807.
  • 18
    Mummery CL, Zhang J, Ng ES, et al. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res. 2012; 111: 34458.
  • 19
    van der Valk J, Brunner D, De Smet K, et al. Optimization of chemically defined cell culture media–Replacing fetal bovine serum in mammalian in vitro methods. Toxicol In Vitro. 2010; 24: 105363.
  • 20
    Bass GT, Ryall KA, Katikapalli A. Automated image analysis identifies signaling pathways regulating distinct signatures of cardiac myocyte hypertrophy. J Mol Cell Cardiol. 2012; 52: 92330.
  • 21
    Nag AC, Lee ML, Kosiur JR. Adult cardiac muscle cells in long-term serum-free culture: myofibrillar organization and expression of myosin heavy chain isoforms. In Vitro Cell Dev B. 1990; 26: 46470.
  • 22
    Peters MF, Scott CW. Evaluation of cellular impedance measures of cardiomyocyte cultures for drug screening applications. Assay Drug Dev Technol. 2012; 10: 52533.
  • 23
    Ren R, Oakley RH, Cruz-Topete D, et al. Dual role for glucocorticoids in cardiomyocyte hypertrophy and apoptosis. Endocrinology. 2012; 153: 534660.
  • 24
    Simpson P, McGrath A, Savion S. Myocyte hypertrophy in neonatal rat heart cultures and its regulation by serum and by catecholamines. Circ Res. 1982; 51: 787801.
  • 25
    Birket MJ, Casini S, Kosmidis G, et al. PGC-1alpha and reactive oxygen species regulate human embryonic stem cell-derived cardiomyocyte function. Stem Cell Rep. 2013; 1: 56074.
  • 26
    Yu M, Xiang F, Beyer RP, et al. Transcription factor CHF1/Hey2 regulates specific pathways in serum stimulated primary cardiac myocytes: implications for cardiac hypertrophy. Curr Genomics. 2010; 11: 28796.
  • 27
    Pijnappels DA, Schalij MJ, van Tuyn J, et al. Progressive increase in conduction velocity across human mesenchymal stem cells is mediated by enhanced electrical coupling. Cardiovasc Res. 2006; 72: 28291.
  • 28
    Elliott DA, Braam SR, Koutsis K, et al. NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nat Methods. 2011; 8: 103740.
  • 29
    Dambrot C, Van Den Berg C, Oostwaard DW, et al. Chapter 27 - cardiomyocyte differentiation of human pluripotent stem cells. In: Peterson S, Loring JF, editors. Human stem cell manual (2nd ed.). Boston, MA: Academic Press; 2012. pp. 41331.
  • 30
    Dambrot C, van de Pas S, van Zijl L, et al. Polycistronic lentivirus induced pluripotent stem cells from skin biopsies after long term storage, blood outgrowth endothelial cells and cells from milk teeth. Differentiation. 2013; 85: 1019.
  • 31
    Davis RP, Casini S, van den Berg CW, et al. Cardiomyocytes derived from pluripotent stem cells recapitulate electrophysiological characteristics of an overlap syndrome of cardiac sodium channel disease. Circulation. 2012; 125: 307991.
  • 32
    Takahashi A, Camacho P, Lechleiter JD, et al. Measurement of intracellular calcium. Physiol Rev. 1999; 79: 1089125.
  • 33
    Umar S, van der Valk EJ, Schalij MJ, et al. Integrin stimulation-induced hypertrophy in neonatal rat cardiomyocytes is NO-dependent. Mol Cell Biochem. 2009; 320: 7584.
  • 34
    Freund C, Ward-van OD, Monshouwer-Kloots J, et al. Insulin redirects differentiation from cardiogenic mesoderm and endoderm to neuroectoderm in differentiating human embryonic stem cells. Stem Cells. 2008; 26: 72433.
  • 35
    Passier R, Oostwaard DW, Snapper J, et al. Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells. 2005; 23: 77280.
  • 36
    Akazawa H, Komuro I. Roles of cardiac transcription factors in cardiac hypertrophy. Circ Res. 2003; 92: 107988.
  • 37
    Zhou MD, Sucov HM, Evans RM, et al. Retinoid-dependent pathways suppress myocardial cell hypertrophy. Proc Natl Acad Sci USA. 1995; 92: 73915.
  • 38
    Bird SD, Doevendans PA, van Rooijen MA, et al. The human adult cardiomyocyte phenotype. Cardiovasc Res. 2003; 58: 42334.
  • 39
    Dlugosz AA, Antin PB, Nachmias VT, et al. The relationship between stress fiber-like structures and nascent myofibrils in cultured cardiac myocytes. J Cell Biol. 1984; 99: 226878.
  • 40
    Liu ZP, Olson EN. Suppression of proliferation and cardiomyocyte hypertrophy by CHAMP, a cardiac-specific RNA helicase. Proc Natl Acad Sci USA. 2002; 99: 20438.
  • 41
    Zhu H, McElwee-Witmer S, Perrone M, et al. Phenylephrine protects neonatal rat cardiomyocytes from hypoxia and serum deprivation-induced apoptosis. Cell Death Differ. 2000; 7: 77384.
  • 42
    van Dijk SJ, Dooijes D, Dos RC, et al. Cardiac myosin-binding protein C mutations and hypertrophic cardiomyopathy: haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction. Circulation. 2009; 119: 147383.