• allometry;
  • cranium;
  • morphological disparity;
  • ontogenetic trajectories


We explored the ontogenetic dynamics of the morphological and allometric disparity in the cranium shapes of twelve lacertid lizard species. The analysed species (Darevskia praticola, Dinarolacerta mosorensis, Iberolacerta horvathi, Lacerta agilis, L. trilineata, L. viridis, Podarcis erhardii, P. melisellensis, P. muralis, P. sicula, P. taurica and Zootoca vivipara) can be classified into different ecomorphs: terrestrial lizards that inhabit vegetated habitats (habitats with lush or sparse vegetation), saxicolous and shrub-climbing lizards. We observed that there was an overall increase in the morphological disparity (MD) during the ontogeny of the lacertid lizards. The ventral cranium, which is involved in the mechanics of jaw movement and feeding, showed higher levels of MD, an ontogenetic shift in the morphospace planes and more variable allometric patterns than more conserved dorsal crania. With respect to ecology, the allometric trajectories of the shrub-climbing species tended to cluster together, whereas the allometric trajectories of the saxicolous species were highly dispersed. Our results indicate that the ontogenetic patterns of morphological and allometric disparity in the lacertid lizards are modified by ecology and functional constraints and that the identical mechanisms that lead to intraspecific morphological variation also produce morphological divergence at higher taxonomic levels.