SEARCH

SEARCH BY CITATION

Keywords:

  • enzyme-linked immunosorbent assays;
  • Hippodamia convergens;
  • marking efficiency;
  • mark–release–recapture;
  • protein marking

Abstract

A field study was conducted to test the marking efficiency of broadcast spray applications of protein marks on stationary (represented by cadavers) and free-roaming lady beetles Hippodamia convergens Guérin-Méneville that were strategically placed in blooming alfalfa plots. The marks tested included three different concentrations of egg albumin from chicken egg white, casein from bovine milk and trypsin inhibitor from soy milk. The cadaver and free-roaming beetle treatments served to measure the acquisition and retention of each protein treatment regime by direct contact with the spray solution and by residual contact with protein-marked residue on alfalfa, respectively. In addition, the vertical distribution of marking efficacy was determined by sampling alfalfa plant tissue and beetle cadavers that were located on the upper and lower portion of the plant canopy. The data indicated that the backpack spray apparatus was very effective at uniformly administering the various protein marks, regardless of the concentration, throughout the entire plant canopy. Also, the free-roaming beetles readily self-marked by contact exposure to protein-treated plants. We also identified concentrations of each protein type that will mark about 90% of the resident beetle population. Moreover, if a mark–capture-type study only requires two unique protein marks, we determined that concentrations of 25% for egg white and 100% for bovine milk could be used to mark 98% of the population. Our results provide a significant step towards standardizing protein immunomarking protocols for insect mark–capture dispersal research. In addition, we identify several areas of research that are needed to further standardize the protein mark–capture procedure.