• Bacillus subtilis ;
  • citrus by-product;
  • fermentation;
  • olive flounder;
  • probiotic bacteria


Two consecutive studies were conducted to evaluate the dietary supplementation of citrus by-products (CB) fermented with probiotic bacteria on growth performance, feed utilization, innate immune responses and disease resistance of juvenile olive flounder. In Experiment I, five diets were formulated to contain 0% (control) or 3% four different CB fermented with Bacillus subtilis (BS), Enterococcus faecium (EF), Lactobacillus rhamnosus (LR) and L. plantarum (LP) (designated as CON, CBF-BS, CBF-EF, CBF-LR and CBF-LP, respectively). During 10 weeks of a feeding trial, growth performance and feed efficiency were not significantly different among all the fish groups. However, fish fed CBF containing diets had significantly higher survivals than the CON group. Disease resistance of fish against Edwardsiella tarda was increased by the fermentation of CB. In Experiment II, we chose the BS as a promising probiotic and formulated five diets to contain 0%, 2%, 4%, 6% and 8% CBF-BS. Growth performance was not significantly affected by the CBF-BS supplementation during 6 weeks of a feeding trial. Innate immunity of fish was significantly enhanced by CBF-BS supplementation. Myeloperoxidase and lysozyme activities were increased in a dose-dependent manner by dietary CBF-BS inclusions. In a consecutive challenge test against E. tarda, an increased disease resistance was found by CBF-BS supplementation. These studies indicate that the fermentation process of CB with probiotic has beneficial effects on innate immunity and thereby increases disease resistance of olive flounder against E. tarda. Bacillus subtilis can be used as a promising probiotic microbe for by-product fermentation in fish feeds.