• alcoholic liver diseases (ALD);
  • cirrhosis;
  • fatty liver;
  • fibrosis;
  • hepaticsteatosis;
  • liver diseases;
  • vitamin D;
  • vitamin D deficiency.


Thumbnail image of graphical abstract

Traditionally regarded as a typical vitamin regulating calcium and phosphorus homeostasis, vitamin D is now discovered as a highly versatile molecule with emerging roles in immunity, cancer, infectious diseases, fibrosis, fatty liver diseases, and alcoholic liver diseases. A large body of clinical evidence has demonstrated the prevalence and risks of vitamin D deficiency in various chronic diseases. Biologically active vitamin D, 1,25-dihydroxylvitamin D3, is synthesized in two distinct systems. In addition to the classic two-step hydroxylation in the liver and kidneys, 1,25-dihydroxylvitamin D3 can also be produced locally by immune cells in response to infection. The bioactive vitamin D generated in these two pools apparently functions differently: while the former facilitates calcium adsorption and homeostasis, the latter confers immune regulation. The immune regulatory functions of vitamin D are demonstrated by induction of antimicrobial peptides, suppression of innate immune response, induction of Th2 cytokines, and stimulation of T-regulatory T cells. Vitamin D deficiency or insufficiency is overwhelmingly associated with viral hepatitis, cirrhosis, and fatty liver diseases. Recent clinical trials have shown that vitamin D supplements significantly enhance the efficacy of interferon plus ribavirin therapy through sustained virological response. A recent study showed that 25-dihydroxyvitamin D rather than 1,25-dihydroxyvitamin D could directly suppress hepatitis C virus assembly. Moreover, clinical evidence has shown that vitamin D deficiency is associated with alcoholic and non-alcoholic fatty liver diseases. In this review, we highlight some recent advances in vitamin D researches and clinical trails.