• c-myc;
  • gastric cancer;
  • microRNAs;
  • miR-494



We recently showed that miR-494 was downregulated in gastric carcinoma (GC). The objectives of this study were to determine the role of miR-494 in GC malignancy and to identify its target genes.


Real-time polymerase chain reaction was employed to quantify the expression level of miR-494 and c-myc in gastric cancer tissues. Bioinformatics was used to predict the downstream target genes of miR-494, which were confirmed by luciferase and RNA immunoprecipitation assays. Cell functional analyses and a xenograft mouse model were used to evaluate the role of miR-494 in malignancy.


miR-494 was downregulated in human GC tissues and in GC cells and was negatively correlated with c-myc expression. High level of c-myc or low level of miR-494 correlated with poor prognosis. The miR-494-binding site in the c-myc 3′ untranslated region was predicted using TargetScan and was confirmed by the luciferase assay. Additionally, c-myc and miR-494 were enriched in coimmunoprecipitates with tagged Argonaute2 proteins in cells overexpressing miR-494. Furthermore, a miR-494 mimic significantly downregulated endogenous c-myc expression, which may contribute to the delayed G1/S transition, decreased synthesis phase bromodeoxyuridine incorporation, and impaired cell growth and colony formation; on the other hand, treatment with a miR-494 inhibitor displayed the opposite effects. Reduced tumor burden and decreased cell proliferation were observed following the delivery of miR-494 into xenograft mice.


miR-494 is downregulated in human GC and acts as an anti-oncogene by targeting c-myc. miR-494 plays a role in the pathogenesis of gastric cancer in a recessive fashion.