• AKT/mTOR pathway;
  • hippocampus;
  • memory;
  • methamphetamine;
  • neuropeptide Y;
  • Y2 receptor


Methamphetamine (METH) is a psychostimulant drug that causes irreversible brain damage leading to several neurological and psychiatric abnormalities, including cognitive deficits. Neuropeptide Y (NPY) is abundant in the mammalian central nervous system (CNS) and has several important functions, being involved in learning and memory processing. It has been demonstrated that METH induces significant alteration in mice striatal NPY, Y1 and Y2 receptor mRNA levels. However, the impact of this drug on the hippocampal NPY system and its consequences remain unknown. Thus, in this study, we investigated the effect of METH intoxication on mouse hippocampal NPY levels, NPY receptors function, and memory performance. Results show that METH increased NPY, Y2 and Y5 receptor mRNA levels, as well as total NPY binding accounted by opposite up- and down-regulation of Y2 and Y1 functional binding, respectively. Moreover, METH-induced impairment in memory performance and AKT/mammalian target of rapamycin pathway were both prevented by the Y2 receptor antagonist, BIIE0246. These findings demonstrate that METH interferes with the hippocampal NPY system, which seems to be associated with memory failure. Overall, we concluded that Y2 receptors are involved in memory deficits induced by METH intoxication.