SEARCH

SEARCH BY CITATION

References

  • Alfoldi P., Franken P., Tobler I. and Borbely A. A. (1991) Short light-dark cycles influence sleep stages and EEG power spectra in the rat. Behav. Brain Res. 43, 125131.
  • Attwell D. and Laughlin S. B. (2001) An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 11331145.
  • Bazzu G., Puggioni G. G., Dedola S., Calia G., Rocchitta G., Migheli R., Desole M. S., Lowery J. P., O'Neill R. D. and Serra P. A. (2009) Real-time monitoring of brain tissue oxygen using a miniaturized biotelemetric device implanted in freely moving rats. Anal. Chem. 81, 22352241.
  • Benoit-Marand M., Suaud-Chagny M. F. and Gonon F. (2007) Presynaptic Regulation of Extracellular Dopamine as Studied by Continuous Amperometry in Anesthetized Animals, in: Electrochemical Methods for Neuroscience (Michael A. and Borland L. eds.), Chapter 3. CRC Press, Boca Raton.
  • Bittner C. X., Valdebenito R., Ruminot I. et al. (2011) Fast and reversible stimulation of astrocytic glycolysis by K+ and a delayed and persistent effect of glutamate. J. Neurosci. 31, 47094713.
  • Braitenberg V. and Schuz A. (1998) Cortex: Statistics and Geometry of Neuronal Connectivity. Springer, New York.
  • Canal C. E., McNay E. C. and Gold P. E. (2005) Increases in extracellular fluid glucose levels in the rat hippocampus following an anesthetic dose of pentobarbital or ketamine-xylazine: an in vivo microdialysis study. Physiol. Behav. 84, 245250.
  • Cirelli C. and Tononi G. (2000) Gene expression in the brain across the sleep-waking cycle. Brain Res. 885, 303321.
  • Cirelli C., Gutierrez C. M. and Tononi G. (2004) Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 41, 3543.
  • Dash M. B., Douglas C. L., Vyazovskiy V. V., Cirelli C. and Tononi G. (2009) Long-term homeostasis of extracellular glutamate in the rat cerebral cortex across sleep and waking states. J. Neurosci. 29, 620629.
  • Dash M. B., Tononi G. and Cirelli C. (2012) Extracellular levels of lactate, but not oxygen, reflect sleep homeostasis in the rat cerebral cortex. Sleep 35, 909919.
  • Dedrick D. F., Sherer Y. D. and Biebuyck J. F. (1975) Use of a rapid brain-sampling technique in a physiologic preparation: effects of morphine, ketamine, and halothane on tissue energy intermediates. Anesthesiology 42, 651657.
  • Desiraju T. (1972) Discharge properties of neurons of the parietal association cortex during states of sleep and wakefulness in the monkey. Brain Res. 47, 6975.
  • Dienel G. A. and Hertz L. (2001) Glucose and lactate metabolism during brain activation. J. Neurosci. Res. 66, 824838.
  • Dixon B. M., Lowry J. P. and O'Neill R. D. (2002) Characterization in vitro and in vivo of the oxygen dependence of an enzyme/polymer biosensor for monitoring brain glucose. J. Neurosci. Methods 119, 135142.
  • Duelli R., Maurer M. H. and Kuschinsky W. (1998a) Decreased glucose transporter densities, rate constants and glucose utilization in visual structures of rat brain during chronic visual deprivation. Neurosci. Lett. 250, 4952.
  • Duelli R., Staudt R., Grunwald F. and Kuschinsky W. (1998b) Increase of glucose transporter densities (Glut1 and Glut3) during chronic administration of nicotine in rat brain. Brain Res. 782, 3642.
  • Fisher S. P. and Sugden D. (2010) Endogenous melatonin is not obligatory for the regulation of the rat sleep-wake cycle. Sleep 33, 833840.
  • Gaitonde M. K., Jones J. and Evans G. (1987) Metabolism of glucose into glutamate via the hexose monophosphate shunt and its inhibition by 6-aminonicotinamide in rat brain in vivo. Proc. R. Soc. Lond. B Biol. Sci. 231, 7190.
  • Gjedde A., Marrett S. and Vafaee M. (2002) Oxidative and nonoxidative metabolism of excited neurons and astrocytes. J. Cereb. Blood Flow Metab. 22, 114.
  • Hallermann S., de Kock C. P., Stuart G. J. and Kole M. H. (2012) State and location dependence of action potential metabolic cost in cortical pyramidal neurons. Nat. Neurosci. 15, 10071014.
  • Hu Y. and Wilson G. S. (1997) Rapid changes in local extracellular rat brain glucose observed with an in vivo glucose sensor. J. Neurochem. 68, 17451752.
  • Jones E. G. (2009) The origins of cortical interneurons: mouse versus monkey and human. Cereb. Cortex 19, 19531956.
  • Karnovsky M. L., Reich P., Anchors J. M. and Burrows B. L. (1983) Changes in brain glycogen during slow-wave sleep in the rat. J. Neurochem. 41, 14981501.
  • Kennedy C., Gillin J. C., Mendelson W. et al. (1982) Local cerebral glucose utilization in non-rapid eye movement sleep. Nature (Lond) 297, 325327.
  • Kong J., Shepel P. N., Holden C. P., Mackiewicz M., Pack A. I. and Geiger J. D. (2002) Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J. Neurosci. 22, 55815587.
  • Lei B., Adachi N. and Arai T. (1998) Measurement of the extracellular H2O2 in the brain by microdialysis. Brain Res. Brain Res. Protoc. 3, 3336.
  • Leybaert L., De Bock M., Van Moorhem M., Decrock E. and De Vuyst E. (2007) Neurobarrier coupling in the brain: adjusting glucose entry with demand. J. Neurosci. Res. 85, 32133220.
  • Lin A. L., Fox P. T., Hardies J., Duong T. Q. and Gao J. H. (2010) Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex. Proc. Natl Acad. Sci. USA 107, 84468451.
  • Mackiewicz M., Shockley K. R., Romer M. A. et al. (2007) Macromolecule biosynthesis - a key function of sleep. Physiol. Genomics 31, 441457.
  • Madsen P. L. and Vorstrup S. (1991) Cerebral blood flow and metabolism during sleep. Cerebrovasc. Brain Metab. Rev. 3, 281296.
  • McNay E. C., Fries T. M. and Gold P. E. (2000) Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task. Proc. Natl Acad. Sci. USA 97, 28812885.
  • McShane B. B., Galante R. J., Jensen S. T., Naidoo N., Pack A. I. and Wyner A. (2010) Characterization of the bout durations of sleep and wakefulness. J. Neurosci. Methods 193, 321333.
  • Merboldt K. D., Bruhn H., Hanicke W., Michaelis T. and Frahm J. (1992) Decrease of glucose in the human visual cortex during photic stimulation. Magn. Reson. Med. 25, 187194.
  • Mongrain V., Hernandez S. A., Pradervand S., Dorsaz S., Curie T., Hagiwara G., Gip P., Heller H. C. and Franken P. (2010) Separating the contribution of glucocorticoids and wakefulness to the molecular and electrophysiological correlates of sleep homeostasis. Sleep 33, 11471157.
  • Murr R., Berger S., Schurer L., Peter K. and Baethmann A. (1994) A novel, remote-controlled suspension device for brain tissue PO2 measurements with multiwire surface electrodes. Pflugers Arch. 426, 348350.
  • Nair P. K., Buerk D. G. and Halsey J. H.Jr. (1987) Comparisons of oxygen metabolism and tissue PO2 in cortex and hippocampus of gerbil brain. Stroke 18, 616622.
  • Naylor E., Aillon D. V., Barrett B. S., Wilson G. S., Johnson D. A., Harmon H. P., Gabbert S. and Petillo P. A. (2012) Lactate as a biomarker for sleep. Sleep 35, 12091222.
  • Netchiporouk L., Shram N., Salvert D. and Cespuglio R. (2001) Brain extracellular glucose assessed by voltammetry throughout the rat sleep-wake cycle. Eur. J. Neurosci. 13, 14291434.
  • Noda H. and Adey W. R. (1973) Neuronal activity in the association cortex of the cat during sleep, wakefulness and anesthesia. Brain Res. 54, 243259.
  • Pellerin L. and Magistretti P. J. (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl Acad. Sci. USA 91, 1062510629.
  • Petit J. M., Tobler I., Kopp C., Morgenthaler F., Borbely A. A. and Magistretti P. J. (2010) Metabolic response of the cerebral cortex following gentle sleep deprivation and modafinil administration. Sleep 33, 901908.
  • Piantadosi C. A. and Tatro L. G. (1990) Regional H2O2 concentration in rat brain after hyperoxic convulsions. J. Appl. Physiol. 69, 17611766.
  • Raichle M. E., Grubb R. L.Jr., Gado M. H., Eichling J. O. and Ter-Pogossian M. M. (1976) Correlation between regional cerebral blood flow and oxidative metabolism. In vivo studies in man. Arch. Neurol. 33, 523526.
  • Rice M. E. (2011) H2O2: a dynamic neuromodulator. Neuroscientist 17, 389406.
  • Robinson D. L., Hermans A., Seipel A. T. and Wightman R. M. (2008) Monitoring rapid chemical communication in the brain. Chem. Rev. 108, 25542584.
  • Shram N., Netchiporouk L. and Cespuglio R. (2002) Lactate in the brain of the freely moving rat: voltammetric monitoring of the changes related to the sleep-wake states. Eur. J. Neurosci. 16, 461466.
  • Sibson N. R., Dhankhar A., Mason G. F., Rothman D. L., Behar K. L. and Shulman R. G. (1998) Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc. Natl Acad. Sci. USA 95, 316321.
  • Siesjo B. (1978) Brain Energy Metabolism. John Wiley & Sons, New York.
  • Silver I. A. and Erecinska M. (1994) Extracellular glucose concentration in mammalian brain: continuous monitoring of changes during increased neuronal activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic animals. J. Neurosci. 14, 50685076.
  • Simpson I. A., Carruthers A. and Vannucci S. J. (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J. Cereb. Blood Flow Metab. 27, 17661791.
  • Sokoloff L. (1960) Metabolism of the central nervous system in vivo, in Handbook of Physiology. Neurophysiology, vol. III, (Field J. and Magoun H. W., eds.), pp. 18431864. American Physiological Society, Washington, DC.
  • Sokoloff L. (1999) Energetics of functional activation in neural tissues. Neurochem. Res. 24, 321329.
  • Sorg O. and Magistretti P. J. (1992) Vasoactive intestinal peptide and noradrenaline exert long-term control on glycogen levels in astrocytes: blockade by protein synthesis inhibition. J. Neurosci. 12, 49234931.
  • Steriade M. and McCarley R. W. (1990) Brainstem Control of Wakefulness and Sleep. Plenum Press, New York.
  • Steriade M., Timofeev I. and Grenier F. (2001) Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol. 85, 19691985.
  • Suzuki A., Stern S. A., Bozdagi O., Huntley G. W., Walker R. H., Magistretti P. J. and Alberini C. M. (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144, 810823.
  • Ueki M., Linn F. and Hossmann K.-A. (1988) Functional activation of cerebral blood flow and metabolism before and after global ischemia of rat brain. J. Cereb. Blood Flow Metab. 8, 486494.
  • Van den Noort S. and Brine K. (1970) Effect of sleep on brain labile phosphates and metabolic rate. Am. J. Physiol. 218, 14341439.
  • Vannucci S. J., Maher F. and Simpson I. A. (1997) Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia 21, 221.
  • Vyazovskiy V. V., Cirelli C., Tononi G. and Tobler I. (2008) Cortical metabolic rates as measured by 2-deoxyglucose-uptake are increased after waking and decreased after sleep in mice. Brain Res. Bull. 75, 591597.
  • Vyazovskiy V. V., Olcese U., Lazimy Y. M., Faraguna U., Esser S. K., Williams J. C., Cirelli C. and Tononi G. (2009) Cortical firing and sleep homeostasis. Neuron 63, 865878.
  • Vyazovskiy V. V., Cirelli C. and Tononi G. (2011) Electrophysiological correlates of sleep homeostasis in freely behaving rats. Prog. Brain Res. 193, 1738.
  • Wang J. (2008) Electrochemical glucose biosensors. Chem. Rev. 108, 814825.
  • Wilson G. S. and Gifford R. (2005) Biosensors for real-time in vivo measurements. Biosens. Bioelectron. 20, 23882403.
  • Wisor J. P., Rempe M. J., Schmidt M. A., Moore M. E. and Clegern W. C. (2012) Sleep slow-wave activity regulates cerebral glycolytic metabolism. Cereb. Cortex. [Epub ahead of print].