SEARCH

SEARCH BY CITATION

References

  • Anantharam V., Kaul S., Song C., Kanthasamy A. and Kanthasamy A. G. (2007) Pharmacological inhibition of neuronal NADPH oxidase protects against 1-methyl-4-phenylpyridinium (MPP+)-induced oxidative stress and apoptosis in mesencephalic dopaminergic neuronal cells. Neurotoxicology 28, 988997.
  • Baydyuk M., Nguyen M. T. and Xu B. (2010) Chronic deprivation of TrkB signaling leads to selective late-onset nigrostriatal dopaminergic degeneration. Exp. Neurol. 228, 118125.
  • Bedard K. and Krause K. H. (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Phys. Rev. 87, 245313.
  • Bernardo A. and Minghetti L. (2006) PPAR-gamma agonists as regulators of microglial activation and brain inflammation. Curr. Pharm. Des. 12, 93109.
  • Bordet R., Ouk T., Petrault O. et al. (2006) PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochem. Soc. Trans. 34, 13411346.
  • Bousquet M., Saint-Pierre M., Julien C., Salem N. Jr, Cicchetti F. and Calon F. (2008) Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson's disease. FASEB J. 22, 12131225.
  • Bousquet M., Gibrat C., Saint-Pierre M., Julien C., Calon F. and Cicchetti F. (2009) Modulation of brain-derived neurotrophic factor as a potential neuroprotective mechanism of action of omega-3 fatty acids in a parkinsonian animal model. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 14011408.
  • Bousquet M., Calon F. and Cicchetti F. (2011a) Impact of omega-3 fatty acids in Parkinson's disease. Ageing Res. Rev. 10, 453463.
  • Bousquet M., Gue K., Emond V., Julien P., Kang J. X., Cicchetti F. and Calon F. (2011b) Transgenic conversion of omega-6 into omega-3 fatty acids in a mouse model of Parkinson's disease. J. Lipid Res. 52, 263271.
  • Brill L. B. II and Bennett J. P. Jr (2003) Dependence on electron transport chain function and intracellular signaling of genomic responses in SH-SY5Y cells to the mitochondrial neurotoxin MPP(+). Exp. Neurol. 181, 2538.
  • Chen C. T., Liu Z., Ouellet M., Calon F. and Bazinet R. P. (2009) Rapid beta-oxidation of eicosapentaenoic acid in mouse brain: an in situ study. Prostaglandins Leukot. Essent. Fatty Acids 80, 157163.
  • Cheung Y. T., Lau W .K., Yu M. S., Lai C. S., Yeung S. C., So K. F. and Chang R. C. (2009) Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology 30, 127135.
  • Clarke S. D. (2000) Polyunsaturated fatty acid regulation of gene transcription: a mechanism to improve energy balance and insulin resistance. Br. J. Nutr. 83 (Suppl 1), S59S66.
  • Cristóvão A. C., Guhathakurta S., Bok E., Je G., Yoo S. D., Choi D. H. and Kim Y. S. (2012) NADPH oxidase 1 mediates α-synucleinopathy in Parkinson's disease. NADPH oxidase 1 mediates α-synucleinopathy in Parkinson's disease. J. Neurosci. 32, 1446514477.
  • Dauer W. and Przedborski S. (2003) Parkinson's disease: mechanisms and models. Neuron 39, 889909.
  • Dehmer T., Lindenau J., Haid S., Dichgans J. and Schulz J. B. (2000) Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J. Neurochem. 74, 22132216.
  • Delattre A. M., Kiss A., Szawka R. E. et al. (2010) Evaluation of chronic omega-3 fatty acids supplementation on behavioral and neurochemical alterations in 6-hydroxydopamine-lesion model of Parkinson's disease. Neurosci. Res. 66, 256264.
  • Dennis J. and Bennett J. P. (2003) Interactions among nitric oxide and Bcl-family proteins after MPP+ exposure of SH-SY5Y neural cells I: MPP+ increases mitochondrial NO and Bax protein. J. Neurosci. Res. 72, 7688.
  • Ding Y. X., Xia Y., Jiao X. Y., Duan L., Yu J., Wang X. and Chen L. W. (2011) The TrkB-positive dopaminergic neurons are less sensitive to MPTP insult in the substantia nigra of adult C57/BL mice. Neurochem. Res. 36, 17591766.
  • Drechsel D. A. and Patel M. (2008) Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson's disease. Free Radic. Biol. Med. 44, 18731886.
  • Dyall S. C. and Michael-Titus A. T. (2008) Neurological benefits of omega-3 fatty acids. Neuromolecular Med. 10, 219235.
  • Ebadi M., Bashir R. M., Heidrick M. L., Hamada F. M., Refaey H. E., Hamed A., Helal G., Baxi M. D., Cerutis D. R. and Lassi N. K. (1997) Neurotrophins and their receptors in nerve injury and repair. Neurochem. Int. 30, 347374.
  • Fath T., Ke Y. D., Gunning P., Götz J. and Ittner L. M. (2009) Primary support cultures of hippocampal and substantia nigra neurons. Nat. Protoc. 4, 7885.
  • Hoang T., Choi D. K., Nagai M. et al. (2009) Neuronal NOS and cyclooxygenase-2 contribute to DNA damage in a mouse model of Parkinson disease. Free Radic. Biol. Med. 47, 10491056.
  • Kalivendi S. V., Cunningham S., Kotamraju S., Joseph J., Hillard C. J. and Kalyanaraman B. (2004) Alpha-synuclein up-regulation and aggregation during MPP+-induced apoptosis in neuroblastoma cells: intermediacy of transferrin receptor iron and hydrogen peroxide. J. Biol. Chem. 279, 1524015247.
  • Kawashima A., Harada T., Kami H., Yano T., Imada K. and Mizuguchi K. (2010) Effects of eicosapentaenoic acid on synaptic plasticity, fatty acid profile and phosphoinositide 3-kinase signaling in rat hippocampus and differentiated PC12 cells. J. Nutr. Biochem. 21, 268277.
  • Kitajka K., Sinclair A. J., Weisinger R. S., Weisinger H. S., Mathai M., Jayasooriya A. P., Halver J. E. and Puskás L. G. (2004) Effects of dietary omega-3 polyunsaturated fatty acids on brain gene expression. Proc. Natl Acad. Sci. USA 101, 1093110936.
  • Klivenyi P., Beal M. F., Ferrante R. J., Andreassen O. A., Wermer M., Chin M. R. and Bonventre J. V. (1998) Mice deficient in group IV cytosolic phospholipase A2 are resistant to MPTP neurotoxicity. J. Neurochem. 71, 26342637.
  • Kou W., Luchtman D. and Song C. (2008) Eicosapentaenoic acid (EPA) increases cell viability and expression of neurotrophin receptors in retinoic acid and brain-derived neurotrophic factor differentiated SH-SY5Y cells. Eur. J. Nutr. 47, 104113.
  • Langelier B., Alessandri J. M., Perruchot M. H., Guesnet P. and Lavialle M. (2005) Changes of the transcriptional and fatty acid profiles in response to n-3 fatty acids in SH-SY5Y neuroblastoma cells. Lipids 40, 719728.
  • Lawson L. J., Perry V. H., Dri P. and Gordon S. (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39, 151170.
  • Lonergan P. E., Martin D. S., Horrobin D. F. and Lynch M. A. (2002) Neuroprotective effect of eicosapentaenoic acid in hippocampus of rats exposed to gamma-irradiation. J. Biol. Chem. 277, 2080420811.
  • Lonergan P. E., Martin D. S., Horrobin D. F. and Lynch M. A. (2004) Neuroprotective actions of eicosapentaenoic acid on lipopolysaccharide-induced dysfunction in rat hippocampus. J. Neurochem. 91, 2029.
  • Luchtman D. W. and Song C. (2010) Why SH-SY5Y cells should be differentiated. Neurotoxicology 31, 164165.
  • Luchtman D. W., Meng Q. and Song C. (2012) Ethyl-eicosapentaenoate (E-EPA) attenuates motor impairments and inflammation in the MPTP-probenecid mouse model of Parkinson's disease. Behav. Brain Res. 226(2), 386396.
  • Luellen B. A., Szapacs M. E., Materese C. K. and Andrews A. M. (2006) The neurotoxin 2'-NH2-MPTP degenerates serotonin axons and evokes increases in hippocampal BDNF. Neuropharmacology 50, 297308.
  • Mao L. and Wang J. Q. (2003) Group I metabotropic glutamate receptor-mediated calcium signalling and immediate early gene expression in cultured rat striatal neurons. Eur. J. Neurosci. 17, 741750.
  • Marttila R. J., Lorentz H. and Rinne U. K. (1988) Oxygen toxicity protecting enzymes in Parkinson's disease. Increase of superoxide dismutase-like activity in the substantia nigra and basal nucleus. J. Neurol. Sci. 86, 321331.
  • McGeer P. L. and McGeer E. G. (2008) Glial reactions in Parkinson's disease. Mov. Disord. 23, 474483.
  • Meng Q., Luchtman D. W., El Bahh B., Zidichouski J. A., Yang J. and Song C. (2010) Ethyl-eicosapentaenoate modulates changes in neurochemistry and brain lipids induced by parkinsonian neurotoxin 1-methyl-4-phenylpyridinium in mouse brain slices. Eur. J. Pharmacol. 649, 127134.
  • Mogi M., Togari A., Kondo T., Mizuno Y., Komure O., Kuno S., Ichinose H. and Nagatsu T. (1999) Brain-derived growth factor and nerve growth factor concentrations are decreased in the substantia nigra in Parkinson's disease. Neurosci. Lett. 270, 4548.
  • Nakamura K., Bindokas V. P., Marks J. D., Wright D. A., Frim D. M., Miller R. J. and Kang U. J. (2000) The selective toxicity of 1-methyl-4-phenylpyridinium to dopaminergic neurons: the role of mitochondrial complex I and reactive oxygen species revisited. Mol. Pharmacol. 58, 271278.
  • Offen D., Beart P. M., Cheung N. S., Pascoe C. J., Hochman A., Gorodin S., Melamed E., Bernard R. and Bernard O. (1998) Transgenic mice expressing human Bcl-2 in their neurons are resistant to 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine neurotoxicity. Proc. Natl Acad. Sci. USA 95, 57895794.
  • Peet M., Brind J., Ramchand C. N., Shah S. and Vankar G. K. (2010) Schizophr. Res. 49, 243251.
  • Presgraves S. P., Ahmed T., Borwege S. and Joyce J. N. (2004) Terminally differentiated SH-SY5Y cells provide a model system for studying neuroprotective effects of dopamine agonists. Neurotox. Res. 5, 579598.
  • Rao J. S., Ertley R. N., Lee H. J., DeMar J. C. Jr, Arnold J. T., Rapoport S. I. and Bazinet R. P. (2007a) N-3 polyunsaturated fatty acid deprivation in rats decreases frontal cortex BDNF via a p38 MAPK-dependent mechanism. Mol. Psychiatry 12, 3646.
  • Rao J. S., Ertley R. N., DeMar J. C. Jr, Rapoport S. I., Bazinet R. P. and Lee H. J. (2007b) Dietary n-3 PUFA deprivation alters expression of enzymes of the arachidonic and docosahexaenoic acid cascades in rat frontal cortex. Mol. Psychiatry 12, 151157.
  • Rezak M. (2007) Current pharmacotherapeutic treatment options in Parkinson's disease. Dis. Mon. 53, 214222.
  • Schapira A. H. (2010) Complex I: inhibitors, inhibition and neurodegeneration. Exp. Neurol. 224, 331335.
  • Song C., Zhang X. Y. and Manku M. (2009) Increased phospholipase A2 activity and inflammatory response but decreased nerve growth factor expression in the olfactory bulbectomized rat model of depression: effects of chronic ethyl-eicosapentaenoate treatment. J. Neurosci. 29, 1422.
  • Sere Y. Y., Reqnacq M., Colas J. and Berges T. (2010) A Saccharomyces cerevisiae strain unable to store neutral lipids is tolerant to oxidative stress induced by α-synuc. Free Radic. Biol. Med. 49, 17551764.
  • Szabo S. E., Monroe S. L., Fiorino S., Bitzan J. and Loper K. (2004) Evaluation of an automated instrument for viability and concentration measurements of cryopreserved hematopoietic cells. Lab. Hematol. 10, 109111.
  • Taepavarapruk P. and Song C. (2010) Reductions of acetylcholine release and nerve growth factor expression are correlated with memory impairment induced by interleukin-1beta administrations: effects of omega-3 fatty acid EPA treatment. J. Neurochem. 112, 10541064.
  • Teismann P., Tieu K., Choi D. K., Wu D. C., Naini A., Hunot S., Vila M., Jackson-Lewis V. and Przedborski S. (2003) Cyclooxygenase-2 is instrumental in Parkinson's disease neurodegeneration. Proc. Natl Acad. Sci. USA 100, 54735478.
  • Thomas B., Saravanan K. S. and Mohanakumar K. P. (2008) In vitro and in vivo evidences that antioxidant action contributes to the neuroprotective effects of the neuronal nitric oxide synthase and monoamine oxidase-B inhibitor, 7-nitroindazole. Neurochem. Int. 52, 9902001.
  • de la Torre M. R., Casado A., López-Fernández M. E., Carrascosa D., Casado M. C., Venarucci D. and Venarucci V. (1996) Human aging brain disorders: role of antioxidant enzymes. Neurochem. Res. 21, 885888.
  • Vila M., Jackson-Lewis V., Vukosavic S., Djaldetti R., Liberatore G., Offen D., Korsmeyer S. J. and Przedborski S. (2001) Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Proc. Natl Acad. Sci. USA 98, 28372842.
  • Von Bohlen und Halbach O., Minichiello L. and Unsicker K. (2005) Haploinsufficiency for trkB and trkC receptors induces cell loss and accumulation of alpha-synuclein in the substantia nigra. FASEB J. 19, 17401742.
  • Wang T., Pei Z., Zhang W., Liu B., Langenbach R., Lee C., Wilson B., Reece J. M., Miller D. S. and Hong J. S. (2005) MPP+-induced COX-2 activation and subsequent dopaminergic neurodegeneration. FASEB J. 19, 11341136.
  • Wu D. C., Teismann P., Tieu K., Vila M. and Jackson-Lewis V. (2003) NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Proc. Natl Acad. Sci. USA 100, 61456150.
  • Xie H. R., Hu L. S. and Li G. Y. (2010) SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson's disease. Chin. Med. J. 123, 10861092.
  • Youdim K. A., Martin A. and Joseph J. A. (2000) Essential fatty acids and the brain: possible health implications. Int. J. Dev. Neurosci. 18, 383399.
  • Zawada W. M., Banninger G. P., Thornton J., Marriott B., Cantu D., Rachubinski A. L., Das M., Griffin W. S. and Jones S. M. (2011) Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade. J. Neuroinflammation 8, 129. doi:10.1186/1742-2094-8-129.
  • Zeevalk G. D., Manzino L., Sonsalla P. K. and Bernard L. P. (2007) Characterization of intracellular elevation of glutathione (GSH) with glutathione monoethyl ester and GSH in brain and neuronal cultures: relevance to Parkinson's disease. Exp. Neurol. 20, 512552.