SEARCH

SEARCH BY CITATION

References

  • Avkiran M. and Marber M. S. (2002) Na+/H+ exchange inhibitors for cardioprotective therapy: progress, problems and prospects. J. Am. Coll. Cadiol. 39, 747753.
  • Azzopardi D. (2011) Neuroprotective effects of hypothermia combined with inhaled xenon following perinatal asphyxia (TOBY Xe). Available at http://clinicaltrialsgov/ct2/results?term=00934700 (accessed on 19 September 2011).
  • Azzopardi D., Wyatt J., Cady E., Delpy D., Baudin J., Stewart A., Hope P., Hamilton P. and Reynolds E. (1989) Prognosis of newborn infants with hypoxic-ischemic brain injury assessed by phosphorus magnetic resonance spectroscopy. Pediatr. Res. 25, 445451.
  • Azzopardi D., Strohm B., Edwards A. et al. , Toby Study Group. (2009) Moderate hypothermia to treat perinatal asphyxial encephalopathy. N. Engl. J. Med. 361, 13491358.
  • Bond J., Herman B. and Lemasters J. (1991) Protection by acidotic pH against anoxia/reoxygenation injury to rat neonatal cardiac myocytes. Am. J. Physiol. 71, 195208.
  • Bond J., Chacon E., Herman B. and Lemasters J. (1993) Intracellular pH and Ca2+ homeostasis in the pH paradox of reperfusion injury to neonatal rat cardiac myocytes. Am. J. Physiol. 265, C129C137.
  • Cengiz P., Kleman N., Uluc K., Kendigelen P., Hagemann T., Akture E., Messing A., Ferrazzano P. and Sun D. (2011) Inhibition of Na(+)/H(+) Exchanger Isoform 1 Is Neuroprotective in Neonatal Hypoxic Ischemic Brain Injury. Antioxid. Redox Signal. 14, 1803131813.
  • Cheong J., Cady E. B., Penrice J., Wyatt J., Cox I. J. and Robertson N. J. (2006) Proton MR spectroscopy in neonates with perinatal cerebral hypoxic-ischemic injury: metabolite peak-area ratios, relaxation times, and absolute concentrations. Am. J. Neuroradiol. 27, 15461554.
  • Cheung J., Bonventre J., Malis C. and Leaf A. (1986) Calcium and ischemic injury. N. Engl. J. Med. 314, 16701676.
  • Corbett R., Laptook A. and Nunnally R. (1987) The use of the chemical shift of the phosphomonoester P-31 magnetic resonance peak for the determination of intracellular pH in the brains of neonates. Neurology 37, 17711779.
  • Currin R., Gores G., Thurman R. and Lemasters J. (1991) Protection by acidotic pH against anoxic cell killing in perfused rat liver: evidence for a pH paradox. FASEB J. 5, 207210.
  • Edwards A. D., Brocklehurst P., Gunn A. J., Halliday H., Juszczak E., Levene M., Strohm B., Thoresen M., Whitelaw A. and Azzopardi D. (2010) Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ 340, C363.
  • Faulkner S., Bainbridge A., Kato T. et al. (2011) Xenon augmented hypothermia reduces early lactate/NAA and cell death in Perinatal Asphyxia. Ann. Neurol. 70, 133150.
  • Ferimer H. N., Kutina K. L. and LaManna J. C. (1995) Methyl isobutyl amiloride delays normalisation of brain intracellular pH after cardiac arrest in rats. Crit. Care Med. 23, 11061111.
  • Ferrazzano P., Shi Y., Manhas N., Wang Y., Hutchinson B., Chen X., Chanana V., Gerdts J., Meyerand M. and Sun D. (2011) Inhibiting the Na+/H+ exchanger reduces reperfusion injury: a small animal MRI study. Front. Biosci. (Elite Ed.) 2011, 8188.
  • Helmy M., Tolner E., Vanhatalo S., Voipio J. and Kaila K. (2011) Brain alkalosis causes birth asphyxia seizures, suggesting therapeutic strategy. Ann. Neurol. 69, 493500.
  • Henderson L., Chappell J. and Jones O. (1988) Internal pH changes associated with the activity of NADPH oxidase of human neutrophils. Further evidence for the presence of a H+ conducting channel. Biochem. J. 251, 563567.
  • Higgins R., Raju T., Edwards A. D. et al. (2011) Hypothermia and other treatment options for neonatal encephalopathy: an executive summary of the eunice kennedy shriver NICHD workshop. J. Pediatr. 159, 851858.
  • Hoshino K. and Avkiran M. (2001) Effects of moderate hypothermia on sarcolemmal Na(+)/H(+) exchanger activity and its inhibition by cariporide in cardiac ventricular myocytes. Br. J. Pharmacol. 134, 15871595.
  • Hristova M., Cuthill D., Zbarsky V. et al. (2010) Activation and deactivation of periventricular white matter phagocytes during postnatal mouse development. Glia 58, 1128.
  • Ito D., Tanaka K., Suzuki S., Dembo T. and Fukuuchi Y. (2001) Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke 32, 12081215.
  • Kelen D. and Robertson N. J. (2010) Experimental treatments for hypoxic ischaemic encephalopathy. Early Hum. Dev. 86, 369377.
  • Kendall G. S., Robertson N. J., Iwata O., Peebles D. and Raivich G. (2006) N-methyl-isobutyl-amiloride ameliorates brain injury when commenced before hypoxia ischemia in neonatal mice. Pediatr. Res. 59, 227231.
  • Kurinczuk J., White-Koning M. and Badawi N. (2010) Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum. Dev. 86, 329338.
  • Liu Y., Kintner D., Chanana V., Algharabli J., Chen X., Gao Y., Chen J., Ferrazzano P., Olson J. and Sun D. (2010) Activation of microglia depends on Na+/H+ exchange-mediated H+ homeostasis. J. Neurosci. 30, 1521015220.
  • Lorek A., Takei Y., Cady E. B. et al. (1994) Delayed (“secondary”) cerebral energy failure after acute hypoxia-ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy. Pediatr. Res. 36, 699706.
  • Luo J., Chen H., Kintner D., Shull G. and Sun D. (2005) Decreased neuronal death in Na+/H+ exchanger isoform 1-null mice after in vitro and in vivo ischemia. J. Neurosci. 25, 1125611268.
  • Luo J., Kintner D., Shull G. and Sun D. (2007) ERK1/2-p90RSK-mediated phosphorylation of Na+/H+ exchanger isoform 1. A role in ischemic neuronal death. J. Biol. Chem. 282, 2827428284.
  • Mabe H., Blomqvist P. and Siesjö B. (1983) Intracellular pH in the brain following transient ischemia. J. Cereb. Blood Flow Metab. 3, 109114.
  • Masereel B., Pochet L. and Leaeckmann D. (2003) An overview of inhibitors of Na+ H+ exchanger. Eur. J. Med. Chem. 38, 547554.
  • O'Brien F., Iwata O., Thornton J. et al. (2006) Delayed whole-body cooling to 33 or 35 degrees C and the development of impaired energy generation consequential to transient cerebral hypoxia-ischemia in the newborn piglet. Pediatrics 117, 15491559.
  • Penrice J., Lorek A., Cady E. B. et al. (1997) Proton magnetic resonance spectroscopy of the brain during acute hypoxia-ischemia and delayed cerebral energy failure in the newborn piglet. Pediatr. Res. 41, 795802.
  • Petroff O. and Prichard J. (1985) Cerebral intracellular pH by 31P nuclear magnetic resonance spectroscopy. Neurology 35, 781788.
  • Plesnila N., Muller E., Guretzki S., Ringel F., Staub F. and Baethmann A. (2000) Effect of hypothermia on the volume of rat glial cells. J. Physiol. 523, 155162.
  • Provencher S. (1993) Estimation of metabolite concentrations from localized in in vivo proton NMR spectra. Magn. Reson. Med. 30, 672679.
  • Robertson N. J., Cox I. J., Cowan F., Counsell S., Azzopardi D. and Edwards A. D. (1999) Cerebral intracellular lactic alkalosis persisting months after neonatal encephalopathy measured by magnetic resonance spectroscopy. Pediatr. Res. 46, 287296.
  • Robertson N. J., Cowan F., Cox I. J. and Edwards A. D. (2002) Brain alkaline intracellular pH after neonatal encephalopathy. Ann. Neurol. 52, 732742.
  • Robertson N. J., Bhakoo K., Puri B., Edwards A. D. and Cox I. J. (2005) Hypothermia and amiloride preserve energetics in a neonatal brain slice model. Pediatr. Res. 58, 288296.
  • Shi Y., Chanana V., Watters J., Ferrazzano P. and Sun D. (2011) Role of sodium/hydrogen exchanger isoform 1 in microglial activation and proinflammatory responses in ischemic brains. J. Neurochem. 119, 124135.
  • Slepkov E., Rainey J., Sykes B. and Fliegel L. (2007) Structural and functional analysis of the Na+/H+ exchanger. Biochem. J. 401, 623633.
  • Sun L., Kuroiwa T., Ishibashi S., Miki K., Li S., Xu H., Endo S. and Mizusawa H. (2009) Two region-dependent pathways of eosinophilic neuronal death after transient cerebral ischemia. Neuropathology 29, 4554.
  • Tagin M., Woolcott C., Vincer M., Whyte R. and Stinson D. (2012) Hypothermia for neonatal hypoxic ischemic encephalopathy: an updated systematic review and meta-analysis. Arch. Pediatr. Adolesc. Med. 166, 558566.
  • Teiwes J. and Toto R. (2007) Epithelial sodium channel inhibition in cardiovascular disease. A potential role for amiloride. Am. J. Hypertens. 20, 109117.
  • Teshima Y., Akao M., Jones S. and Marbán E. (2003) Cariporide (HOE642), a selective Na+-H+ exchange inhibitor, inhibits the mitochondrial death pathway. Circulation 108, 22752281.
  • Thayyil S., Chandrasekaran M., Taylor A., Bainbridge A., Cady E. B., Chong K., Murad S., Omar R. and Robertson N. J. (2010) Cerebral magnetic resonance biomarkers in neonatal encephalopathy: a meta-analysis. Pediatrics 125, e382e395.
  • Thoresen M., Penrice J., Lorek A. et al. (1995) Mild hypothermia after severe transient hypoxia-ischemia ameliorates delayed cerebral energy failure in the newborn piglet. Pediatr. Res. 37, 667670.
  • Vanhamme L., van den Boogaart A. and van Huffel S. (1997) Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J. Magn. Reson. Imaging 129, 3543.
  • Vornov J., Thomas A. and Jo D. (1996) Protective effects of extracellular acidosis and blockade of sodium/hydrogen ion exchange during recovery from metabolic inhibition in neuronal tissue culture. J. Neurochem. 67, 23792389.
  • Wakabayashi S., Fafournoux P., Sardet C. and Pouysségur J. (1992) The Na+/H+ antiporter cytoplasmic domain mediates growth factor signals and controls “H(+)-sensing”. Proc. Natl Acad. Sci. 89, 24242428.
  • Welch K., Levine S. and Helpern J. (1990) Pathophysiological correlates of cerebral ischemia the significance of cellular acid base shifts. Funct. Neurol. 5, 2131.
  • Werner A., Martin S., Gutierrez-Ramos J. and Raivich G. (2001) Leukocyte recruitment and neuroglial activation during facial nerve regeneration in ICAM-1-deficient mice: effects of breeding strategy. Cell Tissue Res. 305, 2541.
  • Williams G. and Smith M. (1995) Application of the accurate assessment of intracellular magnesium and pH from the 31P shifts of ATP to cerebral hypoxia-ischemia in neonatal rat. Magn. Reson. Med. 33, 853857.
  • Yamauchi T., Ichikawa H., Sawa Y., Fukushima N., Kagisaki K., Maeda K., Matsuda H. and Shirakura R. (1997) The contribution of Na+/H+ exchange to ischemia-reperfusion injury after hypothermic cardioplegic arrest. Ann. Thorac. Surg. 63, 11071112.
  • Zhou Z. and Willis J. (1989) Differential effects of cooling in hibernator and nonhibernator cells: Na permeation. Am. J. Physiol. 256, R49R55.