SEARCH

SEARCH BY CITATION

References

  • Alessi D. R., Cuenda A., Cohen P., Dudley D. T. and Saltiel A. R. (1995) PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J. Biol. Chem. 270, 2748927494.
  • Balazs R. (2006) Trophic effect of glutamate. Curr. Top. Med. Chem. 6, 961968.
  • Boulton T. G., Nye S. H., Robbins D. J., Ip N. Y., Radziejewska E., Morgenbesser S. D., DePinho R. A., Panayotatos N., Cobb M. H. and Yancopoulos G. D. (1991) ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65, 663675.
  • Chandler L. J., Sutton G., Dorairaj N. R. and Norwood D. (2001) N-methyl D-aspartate receptor-mediated bidirectional control of extracellular signal-regulated kinase activity in cortical neuronal cultures. J. Biol. Chem. 276, 26272636.
  • Chen L., Liu L., Yin J., Luo Y. and Huang S. (2009) Hydrogen peroxide-induced neuronal apoptosis is associated with inhibition of protein phosphatase 2A and 5, leading to activation of MAPK pathway. Int. J. Biochem. Cell Biol. 41, 12841295.
  • Choi W. S., Eom D. S., Han B. S., Kim W. K., Han B. H., Choi E. J., Oh T. H., Markelonis G. J., Cho J. W. and Oh Y. J. (2004) Phosphorylation of p38 MAPK induced by oxidative stress is linked to activation of both caspase-8- and -9-mediated apoptotic pathways in dopaminergic neurons. J. Biol. Chem. 279, 2045120460.
  • Cohen G. M. (1997) Caspases: the executioners of apoptosis. Biochem. J. 326(Pt 1), 116.
  • Cuadrado A. and Nebreda A. R. (2010) Mechanisms and functions of p38 MAPK signalling. Biochem. J. 429, 403417.
  • Daniels W. M., Hendricks J., Salie R. and Taljaard J. J. (2001) The role of the MAP-kinase superfamily in beta-amyloid toxicity. Metab. Brain Dis. 16, 175185.
  • Davies S. P., Reddy H., Caivano M. and Cohen P. (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351, 95105.
  • Duan W., Ladenheim B., Cutler R. G., Kruman I. I., Cadet J. L. and Mattson M. P. (2002) Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson's disease. J. Neurochem. 80, 101110.
  • Ehlers M. D. (2000) Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28, 511525.
  • Favata M. F., Horiuchi K. Y., Manos E. J. et al. (1998) Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J. Biol. Chem. 273, 1862318632.
  • Ganapathy P. S., White R. E., Ha Y., Bozard B. R., McNeil P. L., Caldwell R. W., Kumar S., Black S. M. and Smith S. B. (2011a) The role of N-methyl-D-aspartate receptor activation in homocysteine-induced death of retinal ganglion cells. Invest. Ophthalmol. Vis. Sci. 52, 55155524.
  • Ganapathy P. S., Perry R. L., Tawfik A., Smith R. M., Perry E., Roon P., Bozard B. R., Ha Y. and Smith S. B. (2011b) Homocysteine-mediated modulation of mitochondrial dynamics in retinal ganglion cells. Invest. Ophthalmol. Vis. Sci. 52, 55515558.
  • Hardingham G. E., Fukunaga Y. and Bading H. (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci. 5, 405414.
  • Hetman M. and Kharebava G. (2006) Survival signaling pathways activated by NMDA receptors. Curr. Top. Med. Chem. 6, 787799.
  • Ho P. I., Ortiz D., Rogers E. and Shea T. B. (2002) Multiple aspects of homocysteine neurotoxicity: glutamate excitotoxicity, kinase hyperactivation and DNA damage. J. Neurosci. Res. 70, 694702.
  • Houliston R. A., Pearson J. D. and Wheeler-Jones C. P. (2001) Agonist-specific cross talk between ERKs and p38(mapk) regulates PGI(2) synthesis in endothelium. Am. J. Physiol. Cell Physiol. 281, C1266C1276.
  • Jara-Prado A., Ortega-Vazquez A., Martinez-Ruano L., Rios C. and Santamaria A. (2003) Homocysteine-induced brain lipid peroxidation: effects of NMDA receptor blockade, antioxidant treatment, and nitric oxide synthase inhibition. Neurotox. Res. 5, 237243.
  • Junttila M. R., Li S. P. and Westermarck J. (2008) Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J. 22, 954965.
  • Keifer J., Zheng Z. Q. and Zhu D. (2007) MAPK signaling pathways mediate AMPA receptor trafficking in an in vitro model of classical conditioning. J. Neurophysiol. 97, 20672074.
  • Kim M. J., Dunah A. W., Wang Y. T. and Sheng M. (2005) Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. Neuron 46, 745760.
  • Krapivinsky G., Medina I., Krapivinsky L., Gapon S. and Clapham D. E. (2004) SynGAP-MUPP1-CaMKII synaptic complexes regulate p38 MAP kinase activity and NMDA receptor-dependent synaptic AMPA receptor potentiation. Neuron 43, 563574.
  • Kruman I. I., Culmsee C., Chan S. L., Kruman Y., Guo Z., Penix L. and Mattson M. P. (2000) Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J. Neurosci. 20, 69206926.
  • Kruman I. I., Kumaravel T. S., Lohani A., Pedersen W. A., Cutler R. G., Kruman Y., Haughey N., Lee J., Evans M. and Mattson M. P. (2002) Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer's disease. J. Neurosci. 22, 17521762.
  • Legos J. J., McLaughlin B., Skaper S. D., Strijbos P. J., Parsons A. A., Aizenman E., Herin G. A., Barone F. C. and Erhardt J. A. (2002) The selective p38 inhibitor SB-239063 protects primary neurons from mild to moderate excitotoxic injury. Eur. J. Pharmacol. 447, 3742.
  • Li B., Chen N., Luo T., Otsu Y., Murphy T. H. and Raymond L. A. (2002) Differential regulation of synaptic and extra-synaptic NMDA receptors. Nat. Neurosci. 5, 833834.
  • Lipton S. A., Kim W. K., Choi Y. B., Kumar S., D'Emilia D. M., Rayudu P. V., Arnelle D. R. and Stamler J. S. (1997) Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proc. Natl Acad. Sci. USA 94, 59235928.
  • Liu Y., Wong T. P., Aarts M. et al. (2007) NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J. Neurosci. 27, 28462857.
  • Luo J., Kintner D. B., Shull G. E. and Sun D. (2007) ERK1/2-p90RSK-mediated phosphorylation of Na+/H+ exchanger isoform 1. A role in ischemic neuronal death. J. Biol. Chem. 282, 2827428284.
  • Mao L., Tang Q., Samdani S., Liu Z. and Wang J. Q. (2004) Regulation of MAPK/ERK phosphorylation via ionotropic glutamate receptors in cultured rat striatal neurons. Eur. J. Neurosci. 19, 12071216.
  • Mattson M. P. and Shea T. B. (2003) Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci. 26, 137146.
  • Miller J. W. (1999) Homocysteine and Alzheimer's disease. Nutr. Rev. 57, 126129.
  • Muda M., Theodosiou A., Rodrigues N., Boschert U., Camps M., Gillieron C., Davies K., Ashworth A. and Arkinstall S. (1996) The dual specificity phosphatases M3/6 and MKP-3 are highly selective for inactivation of distinct mitogen-activated protein kinases. J. Biol. Chem. 271, 2720527208.
  • Obeid R. and Herrmann W. (2006) Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett. 580, 29943005.
  • Ohori M., Kinoshita T., Okubo M. et al. (2005) Identification of a selective ERK inhibitor and structural determination of the inhibitor-ERK2 complex. Biochem. Biophys. Res. Commun. 336, 357363.
  • Ono K. and Han J. (2000) The p38 signal transduction pathway: activation and function. Cell. Signal. 12, 113.
  • Paul S., Nairn A. C., Wang P. and Lombroso P. J. (2003) NMDA-mediated activation of the tyrosine phosphatase STEP regulates the duration of ERK signaling. Nat. Neurosci. 6, 3442.
  • Poddar R. and Paul S. (2009) Homocysteine-NMDA receptor-mediated activation of extracellular signal-regulated kinase leads to neuronal cell death. J. Neurochem. 110, 10951106.
  • Poddar R., Sivasubramanian N., DiBello P. M., Robinson K. and Jacobsen D. W. (2001) Homocysteine induces expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human aortic endothelial cells: implications for vascular disease. Circulation 103, 27172723.
  • Poddar R., Deb I., Mukherjee S. and Paul S. (2010) NR2B-NMDA receptor mediated modulation of the tyrosine phosphatase STEP regulates glutamate induced neuronal cell death. Journal of neurochemistry.
  • Raingeaud J., Gupta S., Rogers J. S., Dickens M., Han J., Ulevitch R. J. and Davis R. J. (1995) Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem. 270, 74207426.
  • Rakhit S., Clark C. J., O'Shaughnessy C. T. and Morris B. J. (2005) N-methyl-D-aspartate and brain-derived neurotrophic factor induce distinct profiles of extracellular signal-regulated kinase, mitogen- and stress-activated kinase, and ribosomal s6 kinase phosphorylation in cortical neurons. Mol. Pharmacol. 67, 11581165.
  • Riccio A. and Ginty D. D. (2002) What a privilege to reside at the synapse: NMDA receptor signaling to CREB. Nat. Neurosci. 5, 389390.
  • Sacco R. L., Roberts J. K. and Jacobs B. S. (1998) Homocysteine as a risk factor for ischemic stroke: an epidemiological story in evolution. Neuroepidemiology 17, 167173.
  • Sato M., Suzuki K. and Nakanishi S. (2001) NMDA receptor stimulation and brain-derived neurotrophic factor upregulate homer 1a mRNA via the mitogen-activated protein kinase cascade in cultured cerebellar granule cells. J. Neurosci. 21, 37973805.
  • Segal R. A. and Greenberg M. E. (1996) Intracellular signaling pathways activated by neurotrophic factors. Annu. Rev. Neurosci. 19, 463489.
  • Seshadri S., Beiser A., Selhub J., Jacques P. F., Rosenberg I. H., D'Agostino R. B., Wilson P. W. and Wolf P. A. (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N. Engl. J. Med. 346, 476483.
  • Seth A., Gonzalez F. A., Gupta S., Raden D. L. and Davis R. J. (1992) Signal transduction within the nucleus by mitogen-activated protein kinase. J. Biol. Chem. 267, 2479624804.
  • Shaul Y. D. and Seger R. (2007) The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim. Biophys. Acta 1773, 12131226.
  • Stanciu M. and DeFranco D. B. (2002) Prolonged nuclear retention of activated extracellular signal-regulated protein kinase promotes cell death generated by oxidative toxicity or proteasome inhibition in a neuronal cell line. J. Biol. Chem. 277, 40104017.
  • Stanciu M., Wang Y., Kentor R. et al. (2000) Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J. Biol. Chem. 275, 1220012206.
  • Thornberry N. A. and Lazebnik Y. (1998) Caspases: enemies within. Science 281, 13121316.
  • Tuerxun T., Numakawa T., Adachi N., Kumamaru E., Kitazawa H., Kudo M. and Kunugi H. (2010) SA4503, a sigma-1 receptor agonist, prevents cultured cortical neurons from oxidative stress-induced cell death via suppression of MAPK pathway activation and glutamate receptor expression. Neurosci. Lett. 469, 303308.
  • Wang Z., Yang H., Tachado S. D., Capo-Aponte J. E., Bildin V. N., Koziel H. and Reinach P. S. (2006) Phosphatase-mediated crosstalk control of ERK and p38 MAPK signaling in corneal epithelial cells. Invest. Ophthalmol. Vis. Sci. 47, 52675275.
  • Waxman E. A. and Lynch D. R. (2005) N-methyl-D-aspartate receptor subtype mediated bidirectional control of p38 mitogen-activated protein kinase. J. Biol. Chem. 280, 2932229333.
  • Xia Z., Dickens M., Raingeaud J., Davis R. J. and Greenberg M. E. (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 13261331.
  • Xiao Y. Q., Malcolm K., Worthen G. S., Gardai S., Schiemann W. P., Fadok V. A., Bratton D. L. and Henson P. M. (2002) Cross-talk between ERK and p38 MAPK mediates selective suppression of pro-inflammatory cytokines by transforming growth factor-beta. J. Biol. Chem. 277, 1488414893.
  • Yun H. Y., Gonzalez-Zulueta M., Dawson V. L. and Dawson T. M. (1998) Nitric oxide mediates N-methyl-D-aspartate receptor-induced activation of p21ras. Proc. Natl Acad. Sci. USA 95, 57735778.
  • Zhang S. J., Steijaert M. N., Lau D., Schutz G., Delucinge-Vivier C., Descombes P. and Bading H. (2007) Decoding NMDA receptor signaling: identification of genomic programs specifying neuronal survival and death. Neuron 53, 549562.
  • Zhu X., Rottkamp C. A., Boux H., Takeda A., Perry G. and Smith M. A. (2000) Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in Alzheimer disease. J. Neuropathol. Exp. Neurol. 59, 880888.
  • Zhu J. J., Qin Y., Zhao M., Van Aelst L. and Malinow R. (2002) Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell 110, 443455.
  • Zhu X., Raina A. K., Lee H. G., Chao M., Nunomura A., Tabaton M., Petersen R. B., Perry G. and Smith M. A. (2003) Oxidative stress and neuronal adaptation in Alzheimer disease: the role of SAPK pathways. Antioxid. Redox Signal. 5, 571576.
  • Zieminska E., Matyja E., Kozlowska H., Stafiej A. and Lazarewicz J. W. (2006) Excitotoxic neuronal injury in acute homocysteine neurotoxicity: role of calcium and mitochondrial alterations. Neurochem. Int. 48, 491497.
  • Zoccolella S., Martino D., Defazio G., Lamberti P. and Livrea P. (2006) Hyperhomocysteinemia in movement disorders: current evidence and hypotheses. Curr. Vasc. Pharmacol. 4, 237243.