SEARCH

SEARCH BY CITATION

References

  • Berezovska O., Lleo A., Herl L. D., Frosch M. P., Stern E. A., Bacskai B. J. and Hyman B. T. (2005) Familial Alzheimer's disease presenilin 1 mutations cause alterations in the conformation of presenilin and interactions with amyloid precursor protein. J. Neurosci. 25, 30093017.
  • Bray S. J. (2006) Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 7, 678689.
  • Capell A., Saffrich R., Olivo J. C., Meyn L., Walter J., Grunberg J., Mathews P., Nixon R., Dotti C. and Haass C. (1997) Cellular expression and proteolytic processing of presenilin proteins is developmentally regulated during neuronal differentiation. J. Neurochem. 69, 24322440.
  • Chavéz-Gutiérrez L., Tolia A., Maes E., Li T., Wong P. C. and de Strooper B. (2008) Glu332 in the nicastrin ectodomain is essential for γ-secretase complex maturation but not for its activity. J. Biol. Chem. 283, 2009620105.
  • Chavéz-Gutiérrez L., Bammens L., Benilova I. et al. (2012) The mechanism of γ-Secretase dysfunction in familial Alzheimer disease. EMBO J. 31, 22612274.
  • Dries D. R. and Yu G. (2008) Assembly, maturation, and trafficking of the γ-secretase complex in Alzheimer's disease. Curr. Alzheimer Res. 5, 132146.
  • Dries D. R., Shah S., Han Y. H., Yu C., Yu S., Shearman M. S. and Yu G. (2009) Glu-333 of nicastrin directly participates in γ-secretase activity. J. Biol. Chem. 284, 2971429724.
  • Edbauer D., Winkler E., Regula J. T., Pesold B., Steiner H. and Haass C. (2003) Reconstitution of γ-secretase activity. Nat. Cell Biol. 5, 486488.
  • Esler W. P., Kimberly W. T., Ostaszewski B. L., Ye W., Diehl T. S., Selkoe D. J. and Wolfe M. S. (2002) Activity-dependent isolation of the presenilin–γ-secretase complex reveals nicastrin and a γ substrate. Proc. Natl Acad. Sci. USA 99, 27202725.
  • Fukumori A., Fluhrer R., Steiner H. and Haass C. (2010) Three-amino acid spacing of presenilin endoproteolysis suggests a general stepwise cleavage of γ-secretase-mediated intramembrane proteolysis. J. Neurosci. 30, 78537862.
  • Gong P., Vetrivel K. S., Nguyen P. D., Meckler X., Cheng H., Kounnas M. Z., Wagner S. L., Parent A. T. and Thinakaran G. (2010) Mutation analysis of the presenilin 1 N-terminal domain reveals a broad spectrum of γ-secretase activity toward amyloid precursor protein and other substrates. J. Biol. Chem. 285, 3804238052.
  • Haass C. and Selkoe D. J. (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 8, 101112.
  • Hahn S., Bruning T., Ness J., Czirr E., Baches S., Gijsen H., Korth C., Pietrzik C. U., Bulic B. and Weggen S. (2011) Presenilin-1 but not amyloid precursor protein mutations present in mouse models of Alzheimer's disease attenuate the response of cultured cells to γ-secretase modulators regardless of their potency and structure. J. Neurochem. 116, 385395.
  • Hemming M. L., Elias J. E., Gygi S. P. and Selkoe D. J. (2008) Proteomic profiling of γ-secretase substrates and mapping of substrate requirements. PLoS Biol. 6, e257.
  • Hu J., Xue Y., Lee S. and Ha Y. (2011) The crystal structure of GXGD membrane protease FlaK. Nature 475, 528531.
  • Imbimbo B. P. and Giardina G. A. (2011) γ-Secretase inhibitors and modulators for the treatment of Alzheimer's disease: disappointments and hopes. Curr. Top. Med. Chem. 11, 15551570.
  • Kornilova A. Y., Bihel F., Das C. and Wolfe M. S. (2005) The initial substrate-binding site of γ-secretase is located on presenilin near the active site. Proc. Natl Acad. Sci. USA 102, 32303235.
  • Kretner B., Fukumori A., Gutsmiedl A., Page R. M., Luebbers T., Galley G., Baumann K., Haass C. and Steiner H. (2011) Attenuated Aβ42 responses to low potency γ-secretase modulators can be overcome for many pathogenic presenilin mutants by second-generation compounds. J. Biol. Chem. 286, 1524015251.
  • Kuhn P. H., Wang H., Dislich B., Colombo A., Zeitschel U., Ellwart J. W., Kremmer E., Rossner S. and Lichtenthaler S. F. (2010) ADAM10 is the physiologically relevant, constitutive α-secretase of the amyloid precursor protein in primary neurons. EMBO J. 29, 30203032.
  • Kuperstein I., Broersen K., Benilova I. et al. (2010) Neurotoxicity of Alzheimer's disease Aβ peptides is induced by small changes in the Aβ42 to Aβ40 ratio. EMBO J. 29, 34083420.
  • Lammich S., Okochi M., Takeda M., Kaether C., Capell A., Zimmer A. K., Edbauer D., Walter J., Steiner H. and Haass C. (2002) Presenilin-dependent intramembrane proteolysis of CD44 leads to the liberation of its intracellular domain and the secretion of an Aβ-like peptide. J. Biol. Chem. 277, 4475444759.
  • Lammich S., Schobel S., Zimmer A. K., Lichtenthaler S. F. and Haass C. (2004) Expression of the Alzheimer protease BACE1 is suppressed via its 5'-untranslated region. EMBO Rep. 5, 620625.
  • Lichtenthaler S. F., Haass C. and Steiner H. (2011) Regulated intramembrane proteolysis – lessons from amyloid precursor protein processing. J. Neurochem. 117, 779796.
  • Miletti-González K. E., Murphy K., Kumaran M. N. et al. (2012) Identification of Function for CD44 Intracytoplasmic Domain (CD44-ICD): modulation of matrix metalloproteinase 9 (mmp-9) transcription via novel promoter response element. J. Biol. Chem. 287, 1899519007.
  • Moehlmann T., Winkler E., Xia X. et al. (2002) Presenilin-1 mutations of leucine 166 equally affect the generation of the Notch and APP intracellular domains independent of their effect on Aβ42 production. Proc. Natl Acad. Sci. USA 99, 80258030.
  • Nakaya Y., Yamane T., Shiraishi H. et al. (2005) Random mutagenesis of presenilin-1 identifies novel mutants exclusively generating long amyloid β-peptides. J. Biol. Chem. 280, 1907019077.
  • Okochi M., Steiner H., Fukumori A., Tanii H., Tomita T., Tanaka T., Iwatsubo T., Kudo T., Takeda M. and Haass C. (2002) Presenilins mediate a dual intramembraneous γ-secretase cleavage of Notch-1. EMBO J. 21, 54085416.
  • Page R. M., Baumann K., Tomioka M. et al. (2008) Generation of Aβ38 and Aβ42 is independently and differentially affected by FAD-associated presenilin 1 mutations and γ-secretase modulation. J. Biol. Chem. 283, 677683.
  • Page R. M., Gutsmiedl A., Fukumori A., Winkler E., Haass C. and Steiner H. (2010) β-Amyloid precursor protein mutants respond to γ-secretase modulators. J. Biol. Chem. 285, 1779817810.
  • Pamrén A., Wanngren J., Tjernberg L. O., Winblad B., Bhat R., Naslünd J. and Karlström H. (2011) Mutations in nicastrin protein differentially affect amyloid β-peptide production and Notch protein processing. J. Biol. Chem. 286, 3115331158.
  • Pérez-Revuelta B. I., Fukumori A., Lammich S., Yamasaki A., Haass C. and Steiner H. (2010) Requirement for small side chain residues within the GxGD-motif of presenilin for γ-secretase substrate cleavage. J. Neurochem. 112, 940950.
  • Qi-Takahara Y., Morishima-Kawashima M., Tanimura Y. et al. (2005) Longer forms of amyloid β protein: implications for the mechanism of intramembrane cleavage by γ-secretase. J. Neurosci. 25, 436445.
  • Quintero-Monzon O., Martin M. M., Fernandez M. A., Cappello C. A., Krzysiak A. J., Osenkowski P. and Wolfe M. S. (2011) Dissociation between the processivity and total activity of γ-secretase: implications for the mechanism of Alzheimer's disease-causing presenilin mutations. Biochemistry 50, 90239035.
  • Saito T., Suemoto T., Brouwers N. et al. (2011) Potent amyloidogenicity and pathogenicity of Aβ43. Nat. Neurosci. 14, 10231032.
  • Sato C., Morohashi Y., Tomita T. and Iwatsubo T. (2006) Structure of the catalytic pore of γ-secretase probed by the accessibility of substituted cysteines. J. Neurosci. 26, 1208112088.
  • Sato C., Takagi S., Tomita T. and Iwatsubo T. (2008) The C-terminal PAL motif and transmembrane domain 9 of presenilin 1 are involved in the formation of the catalytic pore of the γ-secretase. J. Neurosci. 28, 62646271.
  • Schechter I. and Berger A. (1967) On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27, 157162.
  • Scheuner D., Eckman C., Jensen M. et al. (1996) Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat. Med. 2, 864870.
  • Shah S., Lee S. F., Tabuchi K., Hao Y. H., Yu C., Laplant Q., Ball H., Dann C. E. 3rd, Sudhof T. and Yu G. (2005) Nicastrin functions as a γ-secretase-substrate receptor. Cell 122, 435447.
  • Shirotani K., Tomioka M., Kremmer E., Haass C. and Steiner H. (2007) Pathological activity of familial Alzheimer's disease-associated mutant presenilin can be executed by six different γ-secretase complexes. Neurobiol. Dis. 27, 102107.
  • Sobhanifar S., Schneider B., Lohr F. et al. (2010) Structural investigation of the C-terminal catalytic fragment of presenilin 1. Proc. Natl Acad. Sci. USA 107, 96449649.
  • Steiner H. (2008) The catalytic core of γ-secretase: presenilin revisited. Curr. Alzheimer Res. 5, 147157.
  • Steiner H., Duff K., Capell A. et al. (1999) A loss of function mutation of presenilin-2 interferes with amyloid β-peptide production and Notch signaling. J. Biol. Chem. 274, 2866928673.
  • Steiner H., Kostka M., Romig H. et al. (2000) Glycine 384 is required for presenilin-1 function and is conserved in polytopic bacterial aspartyl proteases. Nat. Cell Biol. 2, 848851.
  • Steiner H., Winkler E., Edbauer D., Prokop S., Basset G., Yamasaki A., Kostka M. and Haass C. (2002) PEN-2 is an integral component of the γ-secretase complex required for coordinated expression of presenilin and nicastrin. J. Biol. Chem. 277, 3906239065.
  • Steiner H., Fluhrer R. and Haass C. (2008) Intramembrane proteolysis by γ-secretase. J. Biol. Chem. 283, 2962729631.
  • Takami M., Nagashima Y., Sano Y., Ishihara S., Morishima-Kawashima M., Funamoto S. and Ihara Y. (2009) γ-Secretase: successive tripeptide and tetrapeptide release from the transmembrane domain of β-carboxyl terminal fragment. J. Neurosci. 29, 1304213052.
  • Tian G., Sobotka-Briner C. D., Zysk J., Liu X., Birr C., Sylvester M. A., Edwards P. D., Scott C. D. and Greenberg B. D. (2002) Linear non-competitive inhibition of solubilized human γ-secretase by pepstatin A methylester, L685458, sulfonamides, and benzodiazepines. J. Biol. Chem. 277, 3149931505.
  • Tolia A., Horre K. and De Strooper B. (2008) Transmembrane domain 9 of presenilin determines the dynamic conformation of the catalytic site of γ-secretase. J. Biol. Chem. 283, 1979319803.
  • Tomita T. (2009) Secretase inhibitors and modulators for Alzheimer's disease treatment. Expert Rev. Neurother. 9, 661679.
  • Wakabayashi T. and De Strooper B. (2008) Presenilins: members of the γ-secretase quartets, but part-time soloists too. Physiology 23, 194204.
  • Wang J., Brunkan A. L., Hecimovic S., Walker E. and Goate A. (2004) Conserved “PAL” sequence in presenilins is essential for γ-secretase activity, but not required for formation or stabilization of γ-secretase complexes. Neurobiol. Dis. 15, 654666.
  • Wang J., Beher D., Nyborg A. C., Shearman M. S., Golde T. E. and Goate A. (2006) C-terminal PAL motif of presenilin and presenilin homologues required for normal active site conformation. J. Neurochem. 96, 218227.
  • Watanabe N., Image I., II, Takagi S., Tominaga A., Image Image I., Tomita T. and Iwatsubo T. (2010) Functional analysis of the transmembrane domains of presenilin 1: participation of transmembrane domains 2 and 6 in the formation of initial substrate-binding site of γ-secretase. J. Biol. Chem. 285, 1973819746.
  • Weidemann A., Konig G., Bunke D., Fischer P., Salbaum J. M., Masters C. L. and Beyreuther K. (1989) Identification, biogenesis, and localization of precursors of Alzheimer's disease A4 amyloid protein. Cell 57, 115126.
  • Wolfe M. S. (2009) Intramembrane-cleaving proteases. J. Biol. Chem. 284, 1396913973.
  • Wolfe M. S., Xia W., Ostaszewski B. L., Diehl T. S., Kimberly W. T. and Selkoe D. J. (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature 398, 513517.
  • Wu F., Schweizer C., Rudinskiy N., Taylor D. M., Kazantsev A., Luthi-Carter R. and Fraering P. C. (2010) Novel γ-secretase inhibitors uncover a common nucleotide-binding site in JAK3, SIRT2, and PS1. FASEB J. 24, 24642474.
  • Yamasaki A., Eimer S., Okochi M., Smialowska A., Kaether C., Baumeister R., Haass C. and Steiner H. (2006) The GxGD motif of presenilin contributes to catalytic function and substrate identification of γ-secretase. J. Neurosci. 26, 38213828.
  • Zhang X., Hoey R. J., Lin G. et al. (2012) Identification of a tetratricopeptide repeat-like domain in the nicastrin subunit of γ-secretase using synthetic antibodies. Proc. Natl Acad. Sci. USA 109, 85348539.