• body weight;
  • insulin;
  • leptin;
  • metabolism;
  • striatum;
  • VAChT


Cholinergic neurons are known to regulate striatal circuits; however, striatal-dependent physiological outcomes influenced by acetylcholine (ACh) are still poorly under;?>stood. Here, we used vesicular acetylcholine transporter (VAChT)D2-Cre-flox/flox mice, in which we selectively ablated the vesicular acetylcholine transporter in the striatum to dissect the specific roles of striatal ACh in metabolic homeostasis. We report that VAChTD2-Cre-flox/flox mice are lean at a young age and maintain this lean phenotype with time. The reduced body weight observed in these mutant mice is not attributable to reduced food intake or to a decrease in growth rate. In addition, changed activity could not completely explain the lean phenotype, as only young VAChTD2-Cre-flox/flox mice showed increased physical activity. Interestingly, VAChTD2-Cre-flox/flox mice show several metabolic changes, including increased plasma levels of insulin and leptin. They also show increased periods of wakefulness when compared with littermate controls. Taken together, our data suggest that striatal ACh has an important role in the modulation of metabolism and highlight the importance of striatum cholinergic tone in the regulation of energy expenditure. These new insights on how cholinergic neurons influence homeostasis open new avenues for the search of drug targets to treat obesity.