SEARCH

SEARCH BY CITATION

References

  • Anagli J., Han Y., Stewart L., Yang D., Movsisyan A., Abounit K. and Seyfried D. (2009) A novel calpastatin-based inhibitor improves postischemic neurological recovery. Biochem. Biophys. Res. Commun. 385, 9499.
  • Angers R. C., Seward T. S., Napier D., Green M., Hoover E., Spraker T., O'Rourke K., Balachandran A. and Telling G. C. (2009) Chronic wasting disease prions in elk antler velvet. Emerg. Infect. Dis. 15, 696703.
  • Barmada S., Piccardo P., Yamaguchi K., Ghetti B. and Harris D. A. (2004) GFP-tagged prion protein is correctly localized and functionally active in the brains of transgenic mice. Neurobiol. Dis. 16, 527537.
  • Borchelt D. R., Davis J., Fischer M. et al. (1996) A vector for expressing foreign genes in the brains and hearts of transgenic mice. Genet. Anal. 13, 159163.
  • Bretin S., Rogemond V., Marin P., Maus M., Torrens Y., Honnorat J., Glowinski J., Premont J. and Gauchy C. (2006) Calpain product of WT-CRMP2 reduces the amount of surface NR2B NMDA receptor subunit. J. Neurochem. 98, 12521265.
  • Brittain J. M., Piekarz A. D., Wang Y., Kondo T., Cummins T. R. and Khanna R. (2009) An atypical role for collapsin response mediator protein 2 (CRMP-2) in neurotransmitter release via interaction with presynaptic voltage-gated calcium channels. J. Biol. Chem. 284, 3137531390.
  • Brittain J. M., Chen L., Wilson S. M. et al. (2011) Neuroprotection against traumatic brain injury by a peptide derived from the collapsin response mediator protein 2 (CRMP2). J. Biol. Chem. 286, 3777837792.
  • Camins A., Verdaguer E., Folch J. and Pallas M. (2006) Involvement of calpain activation in neurodegenerative processes. CNS Drug Rev. 12, 135148.
  • Carragher N. O. (2006) Calpain inhibition: a therapeutic strategy targeting multiple disease states. Curr. Pharm. Des. 12, 615638.
  • Deng Y., Thompson B. M., Gao X. and Hall E. D. (2007) Temporal relationship of peroxynitrite-induced oxidative damage, calpain-mediated cytoskeletal degradation and neurodegeneration after traumatic brain injury. Exp. Neurol. 205, 154165.
  • Fukata Y., Itoh T. J., Kimura T. et al. (2002) CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat. Cell Biol. 4, 583591.
  • Goll D. E., Thompson V. F., Li H., Wei W. and Cong J. (2003) The calpain system. Physiol. Rev. 83, 731801.
  • Higuchi M., Tomioka M., Takano J., Shirotani K., Iwata N., Masumoto H., Maki M., Itohara S. and Saido T. C. (2005) Distinct mechanistic roles of calpain and caspase activation in neurodegeneration as revealed in mice overexpressing their specific inhibitors. J. Biol. Chem. 280, 1522915237.
  • Institute of Laboratory Animal Resources (US). 2011 Committee on Care and Use of Laboratory Animals. Guide for the care and use of laboratory animals. NIH publication, p v. U.S. Dept. of Health and Human Services, Public Health Service, Bethesda, Md.
  • Iwata A., Stys P. K., Wolf J. A., Chen X. H., Taylor A. G., Meaney D. F. and Smith D. H. (2004) Traumatic axonal injury induces proteolytic cleavage of the voltage-gated sodium channels modulated by tetrodotoxin and protease inhibitors. J. Neurosci. 24, 46054613.
  • Kampfl A., Posmantur R., Nixon R., Grynspan F., Zhao X., Liu S. J., Newcomb J. K., Clifton G. L. and Hayes R. L. (1996) mu-calpain activation and calpain-mediated cytoskeletal proteolysis following traumatic brain injury. J. Neurochem. 67, 15751583.
  • Kupina N. C., Nath R., Bernath E. E., Inoue J., Mitsuyoshi A., Yuen P. W., Wang K. K. and Hall E. D. (2001) The novel calpain inhibitor SJA6017 improves functional outcome after delayed administration in a mouse model of diffuse brain injury. J. Neurotrauma 18, 12291240.
  • Li A., Christensen H. M., Stewart L. R., Roth K. A., Chiesa R. and Harris D. A. (2007) Neonatal lethality in transgenic mice expressing prion protein with a deletion of residues 105–125. EMBO J. 26, 548558.
  • Maki M., Takano E., Mori H., Sato A., Murachi T. and Hatanaka M. (1987) All four internally repetitive domains of pig calpastatin possess inhibitory activities against calpains I and II. FEBS Lett. 223, 174180.
  • McCollum A. T., Jafarifar F., Lynn B. C., Agu R. U., Stinchcomb A. L., Wang S., Chen Q. and Guttmann R. P. (2006) Inhibition of calpain-mediated cell death by a novel peptide inhibitor. Exp. Neurol. 202, 506513.
  • Moldoveanu T., Gehring K. and Green D. R. (2008) Concerted multi-pronged attack by calpastatin to occlude the catalytic cleft of heterodimeric calpains. Nature 456, 404408.
  • Mondello S., Robicsek S. A., Gabrielli A. et al. (2010) alphaII-spectrin breakdown products (SBDPs): diagnosis and outcome in severe traumatic brain injury patients. J. Neurotrauma 27, 12031213.
  • Paxinos G. and Franklin K. B. J. (2001) The mouse brain in stereotaxic coordinates. Academic Press, San Diego.
  • Pike B. R., Zhao X., Newcomb J. K., Posmantur R. M., Wang K. K. and Hayes R. L. (1998) Regional calpain and caspase-3 proteolysis of alpha-spectrin after traumatic brain injury. NeuroReport 9, 24372442.
  • Pike B. R., Flint J., Dutta S., Johnson E., Wang K. K. and Hayes R. L. (2001) Accumulation of non-erythroid alpha II-spectrin and calpain-cleaved alpha II-spectrin breakdown products in cerebrospinal fluid after traumatic brain injury in rats. J. Neurochem. 78, 12971306.
  • Pleasant J. M., Carlson S. W., Mao H., Scheff S. W., Yang K. H. and Saatman K. E. (2011) Rate of neurodegeneration in the mouse controlled cortical impact model is influenced by impactor tip shape: implications for mechanistic and therapeutic studies. J. Neurotrauma 28, 22452262.
  • Posmantur R., Kampfl A., Siman R., Liu J., Zhao X., Clifton G. L. and Hayes R. L. (1997) A calpain inhibitor attenuates cortical cytoskeletal protein loss after experimental traumatic brain injury in the rat. Neuroscience 77, 875888.
  • Quinn C. C., Gray G. E. and Hockfield S. (1999) A family of proteins implicated in axon guidance and outgrowth. J. Neurobiol. 41, 158164.
  • Quinn C. C., Chen E., Kinjo T. G., Kelly G., Bell A. W., Elliott R. C., McPherson P. S. and Hockfield S. (2003) TUC-4b, a novel TUC family variant, regulates neurite outgrowth and associates with vesicles in the growth cone. J. Neurosci. 23, 28152823.
  • Rahajeng J., Giridharan S. S., Naslavsky N. and Caplan S. (2010) Collapsin response mediator protein-2 (Crmp2) regulates trafficking by linking endocytic regulatory proteins to dynein motors. J. Biol. Chem. 285, 3191831922.
  • Rao M. V., Mohan P. S., Peterhoff C. M. et al. (2008) Marked calpastatin (CAST) depletion in Alzheimer's disease accelerates cytoskeleton disruption and neurodegeneration: neuroprotection by CAST overexpression. J. Neurosci. 28, 1224112254.
  • von Reyn C. R., Spaethling J. M., Mesfin M. N., Ma M., Neumar R. W., Smith D. H., Siman R. and Meaney D. F. (2009) Calpain mediates proteolysis of the voltage-gated sodium channel alpha-subunit. J. Neurosci. 29, 1035010356.
  • von Reyn C. R., Mott R. E., Siman R., Smith D. H. and Meaney D. F. (2012) Mechanisms of calpain mediated proteolysis of voltage gated sodium channel alpha-subunits following in vitro dynamic stretch injury. J. Neurochem. 121, 793805.
  • Ringger N. C., O'Steen B. E., Brabham J. G., Silver X., Pineda J., Wang K. K., Hayes R. L. and Papa L. (2004) A novel marker for traumatic brain injury: CSF alphaII-spectrin breakdown product levels. J. Neurotrauma 21, 14431456.
  • Saatman K. E., Bozyczko-Coyne D., Marcy V., Siman R. and McIntosh T. K. (1996) Prolonged calpain-mediated spectrin breakdown occurs regionally following experimental brain injury in the rat. J. Neuropathol. Exp. Neurol. 55, 850860.
  • Saatman K. E., Zhang C., Bartus R. T. and McIntosh T. K. (2000) Behavioral efficacy of posttraumatic calpain inhibition is not accompanied by reduced spectrin proteolysis, cortical lesion, or apoptosis. J. Cereb. Blood Flow Metab. 20, 6673.
  • Saatman K. E., Creed J. and Raghupathi R. (2010) Calpain as a therapeutic target in traumatic brain injury. Neurotherapeutics 7, 3142.
  • Sato K., Minegishi S., Takano J., Plattner F., Saito T., Asada A., Kawahara H., Iwata N., Saido T. C. and Hisanaga S. (2011) Calpastatin, an endogenous calpain-inhibitor protein, regulates the cleavage of the Cdk5 activator p35 to p25. J. Neurochem. 117, 504515.
  • Schoch K. M., Evans H. N., Brelsfoard J. M., Madathil S. K., Takano J., Saido T. C. and Saatman K. E. (2012) Calpastatin overexpression limits calpain-mediated proteolysis and behavioral deficits following traumatic brain injury. Exp. Neurol. 236, 371382.
  • Sorimachi H., Hata S. and Ono Y. (2011) Calpain chronicle-an enzyme family under multidisciplinary characterization. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 87, 287327.
  • Taghian K., Lee J. Y. and Petratos S. (2012) Phosphorylation and cleavage of the family of collapsin response mediator proteins may play a central role in neurodegeneration after CNS trauma. J. Neurotrauma 29, 17281735.
  • Thompson S. N., Carrico K. M., Mustafa A. G., Bains M. and Hall E. D. (2010) A pharmacological analysis of the neuroprotective efficacy of the brain- and cell-permeable calpain inhibitor MDL-28170 in the mouse controlled cortical impact traumatic brain injury model. J. Neurotrauma 27, 22332243.
  • Touma E., Kato S., Fukui K. and Koike T. (2007) Calpain-mediated cleavage of collapsin response mediator protein(CRMP)-2 during neurite degeneration in mice. Eur. J. Neurosci. 26, 33683381.
  • Westenbroek R. E., Merrick D. K. and Catterall W. A. (1989) Differential subcellular localization of the RI and RII Na+ channel subtypes in central neurons. Neuron 3, 695704.
  • Wilson S. M., Xiong W., Wang Y., Ping X., Head J. D., Brittain J. M., Gagare P. D., Ramachandran P. V., Jin X. and Khanna R. (2012) Prevention of posttraumatic axon sprouting by blocking collapsin response mediator protein 2-mediated neurite outgrowth and tubulin polymerization. Neuroscience 210, 451466.
  • Yuen T. J., Browne K. D., Iwata A. and Smith D. H. (2009) Sodium channelopathy induced by mild axonal trauma worsens outcome after a repeat injury. J. Neurosci. Res. 87, 36203625.
  • Zhang Z., Ottens A. K., Sadasivan S., Kobeissy F. H., Fang T., Hayes R. L. and Wang K. K. (2007) Calpain-mediated collapsin response mediator protein-1, -2, and -4 proteolysis after neurotoxic and traumatic brain injury. J. Neurotrauma 24, 460472.
  • Zhang Z., Larner S. F., Liu M. C., Zheng W., Hayes R. L. and Wang K. K. (2009) Multiple alphaII-spectrin breakdown products distinguish calpain and caspase dominated necrotic and apoptotic cell death pathways. Apoptosis 14, 12891298.