SEARCH

SEARCH BY CITATION

References

  • Airaksinen M. S., Thoenen H. and Meyer M. (1997) Vulnerability of midbrain dopaminergic neurons in calbindin-D28k-deficient mice: lack of evidence for a neuroprotective role of endogenous calbindin in MPTP-treated and weaver mice. Eur. J. Neurosci. 9, 120127.
  • Alberi L., Sgado P. and Simon H. H. (2004) Engrailed genes are cell-autonomously required to prevent apoptosis in mesencephalic dopaminergic neurons. Development 131, 32293236.
  • Andersson E., Tryggvason U., Deng Q., Friling S., Alekseenko Z., Robert B., Perlmann T. and Ericson J. (2006) Identification of intrinsic determinants of midbrain dopamine neurons. Cell 124, 393405.
  • Ardayfio P. A., Leung A., Park J., Hwang D. Y., Moran-Gates T., Choi Y. K., Carlezon W. A. Jr, Tarazi F. I. and Kim K. S. (2010) Pitx3-deficient aphakia mice display unique behavioral responses to psychostimulant and antipsychotic drugs. Neuroscience 166, 391396.
  • Asbreuk C. H., Vogelaar C. F., Hellemons A., Smidt M. P. and Burbach J. P. (2002) CNS expression pattern of Lmx1b and coexpression with ptx genes suggest functional cooperativity in the development of forebrain motor control systems. Mol. Cell. Neurosci. 21, 410420.
  • Beeler J. A., Cao Z. F., Kheirbek M. A., Ding Y., Koranda J., Murakami M., Kang U. J. and Zhuang X. (2010) Dopamine-dependent motor learning: insight into levodopa's long-duration response. Ann. Neurol. 67, 639647.
  • Bergman O., Hakansson A., Westberg L., Carmine Belin A., Sydow O., Olson L., Holmberg B., Eriksson E. and Nissbrandt H. (2010) PITX3 polymorphism is associated with early onset Parkinson's disease. Neurobiol. Aging 31, 114117.
  • Bjorklund A. and Lindvall O. (1975) Dopamine in dendrites of substantia nigra neurons: suggestions for a role in dendritic terminals. Brain Res. 83, 531537.
  • Braak H., Del Tredici K., Rub U., De Vos R. A. I., Steur E. N. H. J. and Braak E. (2003) Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197211.
  • Brown M. T., Henny P., Bolam J. P. and Magill P. J. (2009) Activity of neurochemically heterogeneous dopaminergic neurons in the substantia nigra during spontaneous and driven changes in brain state. J. Neurosci. 29, 29152925.
  • Damier P., Hirsch E. C., Agid Y. and Graybiel A. M. (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. Brain, 122 (Pt 8), 14371448.
  • Dauer W. and Przedborski S. (2003) Parkinson's disease: mechanisms and models. Neuron 39, 889909.
  • Dawson T. M. and Dawson V. L. (2003) Molecular pathways of neurodegeneration in Parkinson's disease. Science 302, 819822.
  • Fallon J. H. and Moore R. Y. (1978) Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J. Comp. Neurol. 180, 545580.
  • Fearnley J. M. and Lees A. J. (1991) Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 114, 22832301.
  • Friling S., Andersson E., Thompson L. H. et al. (2009) Efficient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells. Proc. Natl Acad. Sci. USA 106, 76137618.
  • Fu Y., Yuan Y., Halliday G., Rusznak Z., Watson C. and Paxinos G. (2012) A cytoarchitectonic and chemoarchitectonic analysis of the dopamine cell groups in the substantia nigra, ventral tegmental area, and retrorubral field in the mouse. Brain Struct. Funct. 217, 591612.
  • Gaspar P., Ben Jelloun N. and Febvret A. (1994) Sparing of the dopaminergic neurons containing calbindin-D28k and of the dopaminergic mesocortical projections in weaver mutant mice. Neuroscience 61, 293305.
  • Gerfen C. R., Baimbridge K. G. and Thibault J. (1987) The neostriatal mosaic: III. Biochemical and developmental dissociation of patch-matrix mesostriatal systems. J. Neurosci. 7, 39353944.
  • German D. C., Manaye K. F., Sonsalla P. K. and Brooks B. A. (1992) Midbrain dopaminergic cell loss in Parkinson's disease and MPTP-induced parkinsonism: sparing of calbindin-D28k-containing cells. Ann. N. Y. Acad. Sci. 648, 4262.
  • Haber S. N., Ryoo H., Cox C. and Lu W. (1995) Subsets of midbrain dopaminergic neurons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: comparison with the mRNA for the D2 receptor, tyrosine hydroxylase and calbindin immunoreactivity. J. Comp. Neurol. 362, 400410.
  • Halliday G. M. and McCann H. (2010) The progression of pathology in Parkinson's disease. Ann. N. Y. Acad. Sci. 1184, 188195.
  • Haubenberger D., Reinthaler E., Mueller J. C. et al. (2011) Association of transcription factor polymorphisms PITX3 and EN1 with Parkinson's disease. Neurobiol. Aging 32, 302307.
  • Hornykiewicz O. (1966) Dopamine (3-hydroxytyramine) and brain function. Pharmacol. Rev. 18, 925964.
  • Hwang D. Y., Ardayfio P., Kang U. J., Semina E. V. and Kim K. S. (2003) Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice. Brain Res. Mol. Brain Res. 114, 123131.
  • Hwang D. Y., Fleming S. M., Ardayfio P., Moran-Gates T., Kim H., Tarazi F. I., Chesselet M. F. and Kim K. S. (2005) 3,4-dihydroxyphenylalanine reverses the motor deficits in Pitx3-deficient aphakia mice: behavioral characterization of a novel genetic model of Parkinson's disease. J. Neurosci. 25, 21322137.
  • Jacobs F. M., Smits S. M., Noorlander C. W., von Oerthel L., van der Linden A. J., Burbach J. P. and Smidt M. P. (2007) Retinoic acid counteracts developmental defects in the substantia nigra caused by Pitx3 deficiency. Development 134, 26732684.
  • Jacobs F. M., van Erp S., van der Linden A. J., von Oerthel L., Burbach J. P., Smidt and M. P . (2009) Pitx3 potentiates Nurr1 in dopamine neuron terminal differentiation through release of SMRT-mediated repression. Development, 136, 531540.
  • Jacobs F. M., Veenvliet J. V., Almirza W. H. et al. (2011) Retinoic acid-dependent and -independent gene-regulatory pathways of Pitx3 in meso-diencephalic dopaminergic neurons. Development 138, 52135222.
  • Jellinger K. A. (2012) Neuropathology of sporadic Parkinson's disease: evaluation and changes of concepts. Mov. Disord. 27, 830.
  • Kas M. J., van der Linden A. J., Oppelaar H., von Oerthel L., Ramakers G. M. and Smidt M. P. (2008) Phenotypic segregation of aphakia and Pitx3-null mutants reveals that Pitx3 deficiency increases consolidation of specific movement components. Behav. Brain Res. 186, 208214.
  • Kim J., Inoue K., Ishii J., Vanti W. B., Voronov S. V., Murchison E., Hannon G. and Abeliovich A. (2007) A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317, 12201224.
  • Kish S. J., Shannak K. and Hornykiewicz O. (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications. N. Engl. J. Med. 318, 876880.
  • Korotkova T. M., Ponomarenko A. A., Brown R. E. and Haas H. L. (2004) Functional diversity of ventral midbrain dopamine and GABAergic neurons. Mol. Neurobiol. 29, 243259.
  • Landau A. M., Luk K. C., Jones M. L. et al. (2005) Defective Fas expression exacerbates neurotoxicity in a model of Parkinson's disease. J. Exp. Med. 202, 575581.
  • Lavoie B. and Parent A. (1991) Dopaminergic neurons expressing calbindin in normal and parkinsonian monkeys. NeuroReport 2, 601604.
  • Lebel M., Gauthier Y., Moreau A. and Drouin J. (2001) Pitx3 activates mouse tyrosine hydroxylase promoter via a high-affinity binding site. J. Neurochem. 77, 558567.
  • Liang C. L., Sinton C. M., Sonsalla P. K. and German D. C. (1996) Midbrain dopaminergic neurons in the mouse that contain calbindin-D28k exhibit reduced vulnerability to MPTP-induced neurodegeneration. Neurodegeneration 5, 313318.
  • Liss B., Neu A. and Roeper J. (1999) The weaver mouse gain-of-function phenotype of dopaminergic midbrain neurons is determined by coactivation of wvGirk2 and K-ATP channels. J. Neurosci. 19, 88398848.
  • Liu J., Sun Q. Y., Tang B. S. et al. (2011) PITX3 gene polymorphism is associated with Parkinson's disease in Chinese population. Brain Res. 1392, 116120.
  • Matzuk M. M. and Saper C. B. (1985) Preservation of hypothalamic dopaminergic neurons in Parkinson's disease. Ann. Neurol. 18, 552555.
  • Maxwell S. L., Ho H. Y., Kuehner E., Zhao S. and Li M. (2005) Pitx3 regulates tyrosine hydroxylase expression in the substantia nigra and identifies a subgroup of mesencephalic dopaminergic progenitor neurons during mouse development. Dev. Biol. 282, 467479.
  • McRitchie D. A., Hardman C. D. and Halliday G. M. (1996) Cytoarchitectural distribution of calcium binding proteins in midbrain dopaminergic regions of rats and humans. J. Comp. Neurol. 364, 121150.
  • Mizuta I., Tsunoda T., Satake W. et al. (2008) Calbindin 1, fibroblast growth factor 20, and alpha-synuclein in sporadic Parkinson's disease. Hum. Genet. 124, 8994.
  • Mosharov E. V., Larsen K. E., Kanter E. et al. (2009) Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron 62, 218229.
  • van den Munckhof P., Luk K. C., Ste-Marie L., Montgomery J., Blanchet P. J., Sadikot A. F. and Drouin J. (2003) Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons. Development 130, 25352542.
  • van den Munckhof P., Gilbert F., Chamberland M., Lévesque D. and Drouin J. (2006) Striatal neuroadaptation and rescue of locomotor deficit by L-dopa in aphakia mice, a model of Parkinson's disease. J. Neurochem. 96, 160170.
  • Nelson E. L., Liang C. L., Sinton C. M. and German D. C. (1996) Midbrain dopaminergic neurons in the mouse: computer-assisted mapping. J. Comp. Neurol. 369, 361371.
  • Nemoto C., Hida T. and Arai R. (1999) Calretinin and calbindin-D28k in dopaminergic neurons of the rat midbrain: a triple-labeling immunohistochemical study. Brain Res. 846, 129136.
  • Nunes I., Tovmasian L. T., Silva R. M., Burke R. E. and Goff S. P. (2003) Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc. Natl Acad. Sci. USA 100, 42454250.
  • Ono Y., Nakatani T., Sakamoto Y. et al. (2007) Differences in neurogenic potential in floor plate cells along an anteroposterior location: midbrain dopaminergic neurons originate from mesencephalic floor plate cells. Development 134, 32133225.
  • Paxinos G. and Franklin K. B. J. (2004) The Mouse Brain in Stereotaxic Coordinates. Academic Press.
  • Peng C., Aron L., Klein R., Li M., Wurst W., Prakash N. and Le W. (2011) Pitx3 is a critical mediator of GDNF-induced BDNF expression in nigrostriatal dopaminergic neurons. J. Neurosci. 31, 1280212815.
  • Rieger D. K., Reichenberger E., McLean W., Sidow A. and Olsen B. R. (2001) A double-deletion mutation in the Pitx3 gene causes arrested lens development in aphakia mice. Genomics 72, 6172.
  • Sanghera M. K., Manaye K., McMahon A., Sonsalla P. K. and German D. C. (1997) Dopamine transporter mRNA levels are high in midbrain neurons vulnerable to MPTP. NeuroReport 8, 33273331.
  • Semina E. V., Reiter R. S. and Murray J. C. (1997) Isolation of a new homeobox gene belonging to the Pitx/Rieg family: expression during lens development and mapping to the aphakia region on mouse chromosome 19. Hum. Mol. Genet. 6, 21092116.
  • Sgado P., Alberi L., Gherbassi D., Galasso S. L., Ramakers G. M., Alavian K. N., Smidt M. P., Dyck R. H. and Simon H. H. (2006) Slow progressive degeneration of nigral dopaminergic neurons in postnatal Engrailed mutant mice. Proc. Natl Acad. Sci. USA 103, 1524215247.
  • Smidt M. P., van Schaick H. S., Lanctot C., Tremblay J. J., Cox J. J., van der Kleij A. A., Wolterink G., Drouin J. and Burbach J. P. (1997) A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc. Natl Acad. Sci. USA 94, 1330513310.
  • Smidt M. P., Asbreuk C. H., Cox J. J., Chen H., Johnson R. L. and Burbach J. P. (2000) A second independent pathway for development of mesencephalic dopaminergic neurons requires Lmx1b. Nat. Neurosci. 3, 337341.
  • Smidt M. P., Smits S. M., Bouwmeester H., Hamers F. P., van der Linden A. J., Hellemons A. J., Graw J. and Burbach J. P. (2004) Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3. Development 131, 11451155.
  • Sourkes T. L. and Poirier L. (1965) Influence of the substantia nigra on the concentration of 5-hydroxytryptamine and dopamine of the striatum. Nature 207, 202203.
  • Surmeier D. J., Guzman J. N., Sanchez-Padilla J. and Schumacker P. T. (2011) The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson's disease. Neuroscience 198, 221231.
  • Tsuboi K., Kimber T. A. and Shults C. W. (2000) Calretinin-containing axons and neurons are resistant to an intrastriatal 6-hydroxydopamine lesion. Brain Res. 866, 5564.
  • Varnum D. S. and Stevens L. C. (1968) Aphakia, a new mutation in the mouse. J. Hered. 59, 147150.
  • Wallen A. and Perlmann T. (2003) Transcriptional control of dopamine neuron development. Ann. N. Y. Acad. Sci. 991, 4860.
  • Yamada T., McGeer P. L., Baimbridge K. G. and McGeer E. G. (1990) Relative Sparing in Parkinsons-Disease of Substantia-Nigra Dopamine Neurons Containing Calbindin-D28K. Brain Res. 526, 303307.
  • Yu L. H., Lin Z. F., Liu Y., Hu F. Y., He X. H., Liu Z. L. and Xu Y. M. (2010) The transcription factor Pitx3 is a risk modifier for Parkinson's disease in a Chinese Han population. Eur J Neurol.
  • Zetterstrom R. H., Solomin L., Jansson L., Hoffer B. J., Olson L. and Perlmann T. (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science 276, 248250.
  • Zhao S., Maxwell S., Jimenez-Beristain A. et al. (2004) Generation of embryonic stem cells and transgenic mice expressing green fluorescence protein in midbrain dopaminergic neurons. Eur. J. Neurosci. 19, 11331140.