SEARCH

SEARCH BY CITATION

References

  • Baquet Z. C., Gorski J. A. and Jones K. R. (2004) Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J. Neurosci. 24, 42504258.
  • Bithell A., Johnson R. and Buckley N. J. (2009) Transcriptional dysregulation of coding and non-coding genes in cellular models of Huntington's disease. Biochem. Soc. Trans. 37, 12701275.
  • Canto C. and Auwerx J. (2009) PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr. Opin. Lipidol. 20, 98105.
  • Carta A. R., Frau L., Pisanu A., Wardas J., Spiga S. and Carboni E. (2011) Rosiglitazone decreases peroxisome proliferator receptor-gamma levels in microglia and inhibits TNF-alpha production: new evidences on neuroprotection in a progressive Parkinson's disease model. Neuroscience 194, 250261.
  • Chaturvedi R. K., Adhihetty P., Shukla S. et al. (2009) Impaired PGC-1alpha function in muscle in Huntington's disease. Hum. Mol. Genet. 18, 30483065.
  • Chaturvedi R. K., Calingasan N. Y., Yang L., Hennessey T., Johri A. and Beal M. F. (2010) Impairment of PGC-1alpha expression, neuropathology and hepatic steatosis in a transgenic mouse model of Huntington's disease following chronic energy deprivation. Hum. Mol. Genet. 19, 31903205.
  • Chiang M. C., Chen C. M., Lee M. R. et al. (2010) Modulation of energy deficiency in Huntington's disease via activation of the peroxisome proliferator-activated receptor gamma. Hum. Mol. Genet. 19, 40434058.
  • Chiang M. C., Chern Y. and Juo C. G. (2011) The dysfunction of hepatic transcriptional factors in mice with Huntington's Disease. Biochim. Biophys. Acta 1812, 11111120.
  • Chiang M. C., Chern Y. and Huang R. N. (2012) PPARgamma rescue of the mitochondrial dysfunction in Huntington's disease. Neurobiol. Dis. 45, 322328.
  • Chopra V., Fox J. H., Lieberman G. et al. (2007) A small-molecule therapeutic lead for Huntington's disease: preclinical pharmacology and efficacy of C2–8 in the R6/2 transgenic mouse. Proc. Natl Acad. Sci. USA 104, 1668516689.
  • Chou S. Y., Lee Y. C., Chen H. M. et al. (2005) CGS21680 attenuates symptoms of Huntington's disease in a transgenic mouse model. J. Neurochem. 93, 310320.
  • Cui L., Jeong H., Borovecki F., Parkhurst C. N., Tanese N. and Krainc D. (2006) Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127, 5969.
  • Diano S., Liu Z. W., Jeong J. K. et al. (2011) Peroxisome proliferation-associated control of reactive oxygen species sets melanocortin tone and feeding in diet-induced obesity. Nat. Med. 17, 11211127.
  • Diekmann H., Anichtchik O., Fleming A., Futter M., Goldsmith P., Roach A. and Rubinsztein D. C. (2009) Decreased BDNF levels are a major contributor to the embryonic phenotype of huntingtin knockdown zebrafish. J. Neurosci. 29, 13431349.
  • Djousse L., Knowlton B., Cupples L. A., Marder K., Shoulson I. and Myers R. H. (2002) Weight loss in early stage of Huntington's disease. Neurology 59, 13251330.
  • Duan W., Guo Z., Jiang H., Ware M., Li X. J. and Mattson M. P. (2003) Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc. Natl Acad. Sci. USA 100, 29112916.
  • Ebrahim I. O., Howard R. S., Kopelman M. D., Sharief M. K. and Williams A. J. (2002) The hypocretin/orexin system. J. R. Soc. Med. 95, 227230.
  • Etgen G. J., Oldham B. A., Johnson W. T., et al. (2002) A tailored therapy for the metabolic syndrome: the dual peroxisome proliferator-activated receptor-alpha/gamma agonist LY465608 ameliorates insulin resistance and diabetic hyperglycemia while improving cardiovascular risk factors in preclinical models. Diabetes 51, 10831087.
  • Fatehi-Hassanabad Z. and Tasker R. A. (2011) Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) activation confers functional neuroprotection in global ischemia. Neurotox. Res. 19, 462471.
  • Fuenzalida K., Quintanilla R., Ramos P., Piderit D., Fuentealba R. A., Martinez G., Inestrosa N. C. and Bronfman M. (2007) Peroxisome proliferator-activated receptor gamma up-regulates the Bcl-2 anti-apoptotic protein in neurons and induces mitochondrial stabilization and protection against oxidative stress and apoptosis. J. Biol. Chem. 282, 3700637015.
  • Gabery S., Sajjad M. U., Hult S., Soylu R., Kirik D. and Petersen A. (2012) Characterization of a rat model of Huntington's disease based on targeted expression of mutant huntingtin in the forebrain using adeno-associated viral vectors. Eur J Neurosci.
  • Giralt A., Rodrigo T., Martin E. D., Gonzalez J. R., Mila M., Cena V., Dierssen M., Canals J. M. and Alberch J. (2009) Brain-derived neurotrophic factor modulates the severity of cognitive alterations induced by mutant huntingtin: involvement of phospholipaseCgamma activity and glutamate receptor expression. Neuroscience 158, 12341250.
  • Giralt A., Carreton O., Lao-Peregrin C., Martin E. D. and Alberch J. (2011) Conditional BDNF release under pathological conditions improves Huntington's disease pathology by delaying neuronal dysfunction. Mol. Neurodegener. 6, 71.
  • Hoppitt T., Calvert M., Pall H., Rickards H. and Sackley C. (2010) Huntington's disease. Lancet 376, 14631464.
  • Hult S., Soylu R., Bjorklund T., Belgardt B. F., Mauer J., Bruning J. C., Kirik D. and Petersen A. (2011) Mutant huntingtin causes metabolic imbalance by disruption of hypothalamic neurocircuits. Cell Metab. 13, 428439.
  • Hunter J. M., Lesort M. and Johnson G. V. (2007) Ubiquitin-proteasome system alterations in a striatal cell model of Huntington's disease. J. Neurosci. Res. 85, 17741788.
  • Jiang M., Wang J., Fu J. et al. (2012) Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets. Nat. Med. 18, 153158.
  • Jin Y. N. and Johnson G. V. (2010) The interrelationship between mitochondrial dysfunction and transcriptional dysregulation in Huntington disease. J. Bioenerg. Biomembr. 42, 199205.
  • Jin Y. N., Hwang W. Y., Jo C. and Johnson G. V. (2012) Metabolic state determines sensitivity to cellular stress in Huntington disease: normalization by activation of PPARgamma. PLoS ONE 7, e30406.
  • Johri A., Calingasan N. Y., Hennessey T. M., Sharma A., Yang L., Wille E., Chandra A. and Beal M. F. (2012) Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington's disease. Hum. Mol. Genet. 21, 11241137.
  • Jones L. and Hughes A. (2011) Pathogenic mechanisms in Huntington's disease. Int. Rev. Neurobiol. 98, 373418.
  • Kiaei M. (2008) Peroxisome Proliferator-Activated Receptor-gamma in Amyotrophic Lateral Sclerosis and Huntington's Disease. PPAR Res. 2008, 418765.
  • Kiaei M., Kipiani K., Chen J., Calingasan N. Y. and Beal M. F. (2005) Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis. Exp. Neurol. 191, 331336.
  • Li X. J., Orr A. L. and Li S. (2010) Impaired mitochondrial trafficking in Huntington's disease. Biochim. Biophys. Acta 1802, 6265.
  • Liang H. and Ward W. F. (2006) PGC-1alpha: a key regulator of energy metabolism. Adv. Physiol. Educ. 30, 145151.
  • Lin J., Wu P. H., Tarr P. T. et al. (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119, 121135.
  • Lombard D. B., Schwer B., Alt F. W. and Mostoslavsky R. (2008) SIRT6 in DNA repair, metabolism and ageing. J. Intern. Med. 263, 128141.
  • Martin E., Betuing S., Pages C., Cambon K., Auregan G., Deglon N., Roze E. and Caboche J. (2011) Mitogen- and stress-activated protein kinase 1-induced neuroprotection in Huntington's disease: role on chromatin remodeling at the PGC-1-alpha promoter. Hum. Mol. Genet. 20, 24222434.
  • McGill J. K. and Beal M. F. (2006) PGC-1alpha, a new therapeutic target in Huntington's disease? Cell 127, 465468.
  • Napolitano M., Costa L., Palermo R., Giovenco A., Vacca A. and Gulino A. (2011) Protective effect of pioglitazone, a PPARgamma ligand, in a 3 nitropropionic acid model of Huntington's disease. Brain Res. Bull. 85, 231237.
  • Panov A. V., Gutekunst C. A., Leavitt B. R., Hayden M. R., Burke J. R., Strittmatter W. J. and Greenamyre J. T. (2002) Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nat. Neurosci. 5, 731736.
  • Petersen A., Gil J., Maat-Schieman M. L. et al. (2005) Orexin loss in Huntington's disease. Hum. Mol. Genet. 14, 3947.
  • Pouladi M. A., Xie Y., Skotte N. H. et al. (2010) Full-length huntingtin levels modulate body weight by influencing insulin-like growth factor 1 expression. Hum. Mol. Genet. 19, 15281538.
  • Quintanilla R. A. and Johnson G. V. (2009) Role of mitochondrial dysfunction in the pathogenesis of Huntington's disease. Brain Res. Bull. 80, 242247.
  • Quintanilla R. A., Jin Y. N., Fuenzalida K., Bronfman M. and Johnson G. V. (2008) Rosiglitazone treatment prevents mitochondrial dysfunction in mutant huntingtin-expressing cells: possible role of peroxisome proliferator-activated receptor-gamma (PPARgamma) in the pathogenesis of Huntington disease. J. Biol. Chem. 283, 2562825637.
  • Randy L. H. and Guoying B. (2007) Agonism of Peroxisome Proliferator Receptor-Gamma may have Therapeutic Potential for Neuroinflammation and Parkinson's Disease. Curr. Neuropharmacol. 5, 3546.
  • Rasbach K. A. and Schnellmann R. G. (2007) PGC-1alpha over-expression promotes recovery from mitochondrial dysfunction and cell injury. Biochem. Biophys. Res. Commun. 355, 734739.
  • Rosen E. D. and Spiegelman B. M. (2001) PPARgamma: a nuclear regulator of metabolism, differentiation, and cell growth. J. Biol. Chem. 276, 3773137734.
  • Rosenstock T. R., Duarte A. I. and Rego A. C. (2010) Mitochondrial-Associated Metabolic Changes and Neurodegeneration in Huntington's Disease - From Clinical Features to the Bench. Curr Drug Targets.
  • Ross C. A. and Tabrizi S. J. (2011) Huntington's disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 10, 8398.
  • Schintu N., Frau L., Ibba M., Caboni P., Garau A., Carboni E. and Carta A. R. (2009) PPAR-gamma-mediated neuroprotection in a chronic mouse model of Parkinson's disease. Eur. J. Neurosci. 29, 954963.
  • Schutz B., Reimann J., Dumitrescu-Ozimek L., Kappes-Horn K., Landreth G. E., Schurmann B., Zimmer A. and Heneka M. T. (2005) The oral antidiabetic pioglitazone protects from neurodegeneration and amyotrophic lateral sclerosis-like symptoms in superoxide dismutase-G93A transgenic mice. J. Neurosci. 25, 78057812.
  • Simmons D. A., Mehta R. A., Lauterborn J. C., Gall C. M. and Lynch G. (2011) Brief ampakine treatments slow the progression of Huntington's disease phenotypes in R6/2 mice. Neurobiol. Dis. 41, 436444.
  • Strand A. D., Baquet Z. C., Aragaki A. K. et al. (2007) Expression profiling of Huntington's disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. J. Neurosci. 27, 1175811768.
  • Strum J. C., Shehee R., Virley D. et al. (2007) Rosiglitazone induces mitochondrial biogenesis in mouse brain. J. Alzheimers Dis. 11, 4551.
  • The Huntington's Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell 72, 971983.
  • Turner C. and Schapira A. H. (2010) Mitochondrial matters of the brain: the role in Huntington's disease. J. Bioenerg. Biomembr. 42, 193198.
  • Valle I., Alvarez-Barrientos A., Arza E., Lamas S. and Monsalve M. (2005) PGC-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc. Res. 66, 562573.
  • Watson G. S., Cholerton B. A., Reger M. A. et al. (2005) Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am. J. Geriatr. Psychiatry 13, 950958.
  • Wenz T., Diaz F., Spiegelman B. M. and Moraes C. T. (2008) Activation of the PPAR/PGC-1alpha pathway prevents a bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype. Cell Metab. 8, 249256.
  • Weydt P., Pineda V. V., Torrence A. E. et al. (2006) Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1alpha in Huntington's disease neurodegeneration. Cell Metab. 4, 349362.
  • Williams R. H., Morton A. J. and Burdakov D. (2011) Paradoxical function of orexin/hypocretin circuits in a mouse model of Huntington's disease. Neurobiol. Dis. 42, 438445.
  • Xiao C., Kim H. S., Lahusen T., Wang R. H., Xu X., Gavrilova O., Jou W., Gius D. and Deng C. X. (2010) SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice. J. Biol. Chem. 285, 3677636784.
  • Xie Y., Hayden M. R. and Xu B. (2010) BDNF overexpression in the forebrain rescues Huntington's disease phenotypes in YAC128 mice. J. Neurosci. 30, 1470814718.
  • Yang S. J., Choi J. M., Chae S. W. et al. (2011) Activation of peroxisome proliferator-activated receptor gamma by rosiglitazone increases sirt6 expression and ameliorates hepatic steatosis in rats. PLoS ONE 6, e17057.
  • Zheng B., Liao Z., Locascio J. J. et al. (2010) PGC-1alpha, a potential therapeutic target for early intervention in Parkinson's disease. Sci. Transl. Med., 2, 52ra73.
  • Zhong L. and Mostoslavsky R. (2010) SIRT6: a master epigenetic gatekeeper of glucose metabolism. Transcription 1, 1721.
  • Zhong L., D'Urso A., Toiber D. et al. (2010) The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 140, 280293.
  • Zuccato C., Marullo M., Vitali B. et al. (2011) Brain-derived neurotrophic factor in patients with Huntington's disease. PLoS ONE 6, e22966.