SEARCH

SEARCH BY CITATION

References

  • Bodenmuller H., Schaller H. C. and Darai G. (1980) Human hypothalamus and intestine contain a hydra-neuropeptide. Neurosci. Lett. 16, 7174.
  • Burgueno J., Enrich C., Canela E. I., Mallol J., Lluis C., Franco R. and Ciruela F. (2003) Metabotropic glutamate type 1alpha receptor localizes in low-density caveolin-rich plasma membrane fractions. J. Neurochem. 86, 785791.
  • Burgueno J., Canela E. I., Mallol J., Lluis C., Franco R. and Ciruela F. (2004) Mutual regulation between metabotropic glutamate type 1alpha receptor and caveolin proteins: from traffick to constitutive activity. Exp. Cell Res. 300, 2334.
  • Chen L. Y., Chiang A. S., Hung J. J., Hung H. I. and Lai Y. K. (2000) Thapsigargin-induced grp78 expression is mediated by the increase of cytosolic free calcium in 9L rat brain tumor cells. J. Cell. Biochem. 78, 404416.
  • Chini B. and Parenti M. (2009) G-protein-coupled receptors, cholesterol and palmitoylation: facts about fats. J. Mol. Endocrinol. 42, 371379.
  • Ciruela F. and McIlhinney R. A. (1997) Differential internalisation of mGluR1 splice variants in response to agonist and phorbol esters in permanently transfected BHK cells. FEBS Lett. 418, 8386.
  • Ciruela F., Soloviev M. M. and McIlhinney R. A. (1999) Cell surface expression of the metabotropic glutamate receptor type 1alpha is regulated by the C-terminal tail. FEBS Lett. 448, 9194.
  • Ciruela F., Soloviev M. M., Chan W. Y. and McIlhinney R. A. (2000) Homer-1c/Vesl-1L modulates the cell surface targeting of metabotropic glutamate receptor type 1alpha: evidence for an anchoring function. Mol. Cell. Neurosci. 15, 3650.
  • Ciruela F., Burgueno J., Casado V. et al. (2004) Combining mass spectrometry and pull-down techniques for the study of receptor heteromerization. Direct epitope–epitope electrostatic interactions between adenosine A2A and dopamine D2 receptors. Anal. Chem. 76, 53545363.
  • Cookson M. R. (2005) The biochemistry of Parkinson's disease. Annu. Rev. Biochem. 74, 2952.
  • Dev K. K., van der Putten H., Sommer B. and Rovelli G. (2003) Part I: Parkin-associated proteins and Parkinson's disease. Neuropharmacology 45, 113.
  • Donohue P. J., Shapira H., Mantey S. A., Hampton L. L., Jensen R. T. and Battey J. F. (1998) A human gene encodes a putative G protein-coupled receptor highly expressed in the central nervous system. Brain Res. Mol. Brain Res. 54, 152160.
  • Dunham J. H., Meyer R. C., Garcia E. L. and Hall R. A. (2009) GPR37 surface expression enhancement via N-terminal truncation or protein-protein interactions. Biochemistry 48, 1028610297.
  • Dusonchet J., Bensadoun J. C., Schneider B. L. and Aebischer P. (2009) Targeted overexpression of the parkin substrate Pael-R in the nigrostriatal system of adult rats to model Parkinson's disease. Neurobiol. Dis. 35, 3241.
  • Forman M. S., Lee V. M. and Trojanowski J. Q. (2003) ‘Unfolding’ pathways in neurodegenerative disease. Trends Neurosci. 26, 407410.
  • Greaves J. and Chamberlain L. H. (2007) Palmitoylation-dependent protein sorting. J. Cell Biol. 176, 249254.
  • Harding H. P., Novoa I., Zhang Y., Zeng H., Wek R., Schapira M. and Ron D. (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6, 10991108.
  • Imai Y., Soda M., Inoue H., Hattori N., Mizuno Y. and Takahashi R. (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105, 891902.
  • Kaufman R. J. (2002) Orchestrating the unfolded protein response in health and disease. J. Clin. Invest. 110, 13891398.
  • Kitao Y., Imai Y., Ozawa K., et al. (2007) Pael receptor induces death of dopaminergic neurons in the substantia nigra via endoplasmic reticulum stress and dopamine toxicity, which is enhanced under condition of parkin inactivation. Hum. Mol. Genet. 16, 5060.
  • Lebon G., Warne T., Edwards P. C., Bennett K., Langmead C. J., Leslie A. G. and Tate C. G. (2011) Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474, 521525.
  • Lee A. S. (2005) The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35, 373381.
  • Leng N., Gu G., Simerly R. B. and Spindel E. R. (1999) Molecular cloning and characterization of two putative G protein-coupled receptors which are highly expressed in the central nervous system. Brain Res. Mol. Brain Res. 69, 7383.
  • Low K. and Aebischer P. (2012) Use of viral vectors to create animal models for Parkinson's disease. Neurobiol. Dis. 48, 189201.
  • Lujan R. and Ciruela F. (2001) Immunocytochemical localization of metabotropic glutamate receptor type 1 alpha and tubulin in rat brain. NeuroReport 12, 12851291.
  • Marazziti D., Golini E., Gallo A., Lombardi M. S., Matteoni R. and Tocchini-Valentini G. P. (1997) Cloning of GPR37, a gene located on chromosome 7 encoding a putative G-protein-coupled peptide receptor, from a human frontal brain EST library. Genomics 45, 6877.
  • Marazziti D., Gallo A., Golini E., Matteoni R. and Tocchini-Valentini G. P. (1998) Molecular cloning and chromosomal localization of the mouse Gpr37 gene encoding an orphan G-protein-coupled peptide receptor expressed in brain and testis. Genomics 53, 315324.
  • Muchowski P. J. and Wacker J. L. (2005) Modulation of neurodegeneration by molecular chaperones. Nat. Rev. Neurosci. 6, 1122.
  • Murakami T., Shoji M., Imai Y., Inoue H., Kawarabayashi T., Matsubara E., Harigaya Y., Sasaki A., Takahashi R. and Abe K. (2004) Pael-R is accumulated in Lewy bodies of Parkinson's disease. Ann. Neurol. 55, 439442.
  • Omura T., Kaneko M., Okuma Y., et al. (2006) A ubiquitin ligase HRD1 promotes the degradation of Pael receptor, a substrate of Parkin. J. Neurochem. 99, 14561469.
  • Rao R. V. and Bredesen D. E. (2004) Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr. Opin. Cell Biol. 16, 653662.
  • Rezgaoui M., Susens U., Ignatov A., Gelderblom M., Glassmeier G., Franke I., Urny J., Imai Y., Takahashi R. and Schaller H. C. (2006) The neuropeptide head activator is a high-affinity ligand for the orphan G-protein-coupled receptor GPR37. J. Cell Sci. 119, 542549.
  • Schaller H. C., Schilling E., Theilmann L., Bodenmuller H. and Sachsenheimer W. (1988) Elevated levels of head activator in human brain tumors and in serum of patients with brain and other neurally derived tumors. J. Neurooncol. 6, 251258.
  • Schroder M. and Kaufman R. J. (2005) The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739789.
  • Shimura H., Hattori N., Kubo S., et al. (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 25, 302305.
  • Sriram S. R., Li X., Ko H. S., Chung K. K., Wong E., Lim K. L., Dawson V. L. and Dawson T. M. (2005) Familial-associated mutations differentially disrupt the solubility, localization, binding and ubiquitination properties of parkin. Hum. Mol. Genet. 14, 25712586.
  • Szegezdi E., Logue S. E., Gorman A. M. and Samali A. (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 7, 880885.
  • Takahashi R. and Imai Y. (2003) Pael receptor, endoplasmic reticulum stress, and Parkinson's disease. J. Neurol. 250(Suppl 3), III25III29.
  • Valdenaire O., Giller T., Breu V., Ardati A., Schweizer A. and Richards J. G. (1998) A new family of orphan G protein-coupled receptors predominantly expressed in the brain. FEBS Lett. 424, 193196.
  • Yang Y., Nishimura I., Imai Y., Takahashi R. and Lu B. (2003) Parkin suppresses dopaminergic neuron-selective neurotoxicity induced by Pael-R in Drosophila. Neuron 37, 911924.
  • Zeng Z., Su K., Kyaw H. and Li Y. (1997) A novel endothelin receptor type-B-like gene enriched in the brain. Biochem. Biophys. Res. Commun. 233, 559567.
  • Zhang Y., Gao J., Chung K. K., Huang H., Dawson V. L. and Dawson T. M. (2000) Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc. Natl. Acad. Sci. USA 97, 1335413359.