SEARCH

SEARCH BY CITATION

References

  • Akiba H., Nakano H., Nishinaka S. et al. (1998) CD27, a member of the tumor necrosis factor receptor superfamily, activates NF-kappaB and stress-activated protein kinase/c-Jun N-terminal kinase via TRAF2, TRAF5, and NF-kappaB-inducing kinase. J. Biol. Chem. 273, 1335313358.
  • Asahi M., Wang X., Mori T., Sumii T., Jung J. C., Moskowitz M. A., Fini M. E. and Lo E. H. (2001) Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J. Neurosci. 21, 77247732.
  • Au P. Y and Yeh W. C. (2007) Physiological roles and mechanisms of signaling by TRAF2 and TRAF5. Adv. Exp. Med. Biol. 597, 3247.
  • Baldwin K., Orr S., Briand M., Piazza C., Veydt A. and McCoy S. (2010) Acute ischemic stroke update. Pharmacotherapy 30, 493514.
  • Bradley J. R. and Pober J. S. (2001) Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene 20, 64826491.
  • Bronner L. L, Kanter D. S and Manson J. E. (1995) Primary prevention of stroke. N. Engl. J. Med. 333, 13921400.
  • Brouns R. and De Deyn P. P. (2009) The complexity of neurobiological processes in acute ischemic stroke. Clin. Neurol. Neurosurg. 111, 483495.
  • Brown J., Wang H., Suttles J., Graves D. T and Martin M. (2011) Mammalian target of rapamycin complex 2 (mTORC2) negatively regulates Toll-like receptor 4-mediated inflammatory response via FoxO1. J. Biol. Chem. 286, 4429544305.
  • Clark K., Takeuchi O., Akira S. and Cohen P. (2011) The TRAF-associated protein TANK facilitates cross-talk within the IkappaB kinase family during Toll-like receptor signaling. Proc. Natl Acad. Sci. USA 108, 1709317098.
  • Dimitrijevic O. B, Stamatovic S. M, Keep R. F and Andjelkovic A. V. (2006) Effects of the chemokine CCL2 on blood-brain barrier permeability during ischemia-reperfusion injury. J. Cereb. Blood Flow Metab. 26, 797810.
  • Donners M. M., Beckers L., Lievens D. et al. (2008) The CD40-TRAF6 axis is the key regulator of the CD40/CD40L system in neointima formation and arterial remodeling. Blood 111, 45964604.
  • Doyle K. P., Simon R. P. and Stenzel-Poore M. P. (2008) Mechanisms of ischemic brain damage. Neuropharmacology 55, 310318.
  • Engel D., Seijkens T., Poggi M., Sanati M., Thevissen L., Beckers L., Wijnands E., Lievens D. and Lutgens E. (2009) The immunobiology of CD154-CD40-TRAF interactions in atherosclerosis. Semin. Immunol. 21, 308312.
  • Fan W., Morinaga H., Kim J. J., Bae E., Spann N. J., Heinz S., Glass C. K. and Olefsky J. (2010) M. FoxO1 regulates Tlr4 inflammatory pathway signalling in macrophages. EMBO J. 29, 42234236.
  • Feng S., Cen J., Huang Y., Shen H., Yao L., Wang Y. and Chen Z. (2011) Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins. PLoS ONE 6, e20599.
  • Huan W., Wu X., Zhang S., Zhao Y., Xu H., Wang N., Li H., Chen H., Wei H. and Wang Y. (2012) Spatiotemporal patterns and essential role of TNF receptor-associated factor 5 expression after rat spinal cord injury. J. Mol. Histol. 43, 527533.
  • Ishida T. K., Tojo T., Aoki T., Kobayashi N., Ohishi T., Watanabe T., Yamamoto T. and Inoue J. (1996) TRAF5, a novel tumor necrosis factor receptor-associated factor family protein, mediates CD40 signaling. Proc. Natl Acad. Sci. USA 93, 94379442.
  • Ito Y., Daitoku H. and Fukamizu A. (2009) Foxo1 increases pro-inflammatory gene expression by inducing C/EBPbeta in TNF-alpha-treated adipocytes. Biochem. Biophys. Res. Commun. 378, 290295.
  • Jin R., Yang G. and Li G. (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J. Leukoc. Biol. 87, 779789.
  • Jung J. E., Kim G. S., Chen H. et al. (2010) Reperfusion and neurovascular dysfunction in stroke: from basic mechanisms to potential strategies for neuroprotection. Mol. Neurobiol. 41, 172179.
  • Kraus Z. J, Haring J. S and Bishop G. A. (2008) TNF receptor-associated factor 5 is required for optimal T cell expansion and survival in response to infection. J. Immunol. 181, 78007809.
  • Lakhan S. E, Kirchgessner A. and Hofer M. (2009) Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J. Transl. Med. 7, 97.
  • Lu H., Liu P., Pan Y. and Huang H. (2011) Inhibition of cyclin-dependent kinase phosphorylation of FOXO1 and prostate cancer cell growth by a peptide derived from FOXO1. Neoplasia 13, 854863.
  • Lutgens E., Lievens D., Beckers L. et al. (2010) Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. J. Exp. Med. 207, 391404.
  • McColl B. W, Rothwell N. J and Allan S. M. (2008) Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. J. Neurosci. 28, 94519462.
  • Missiou A., Rudolf P., Stachon P. et al. (2010) TRAF5 deficiency accelerates atherogenesis in mice by increasing inflammatory cell recruitment and foam cell formation. Circ. Res. 107, 757766.
  • Murray V., Norrving B., Sandercock P. A., Terent A., Wardlaw J. M. and Wester P. (2010) The molecular basis of thrombolysis and its clinical application in stroke. J. Intern. Med. 267, 191208.
  • Nakano H., Oshima H., Chung W., Williams-Abbott L., Ware C. F., Yagita H. and Okumura K. (1996) TRAF5, an activator of NF-kappaB and putative signal transducer for the lymphotoxin-beta receptor. J. Biol. Chem., 271, 1466114664.
  • Nakano H., Sakon S., Koseki H. et al. (1999) Targeted disruption of TRAF5 gene causes defects in CD40- and CD27-mediated lymphocyte activation. Proc. Natl Acad. Sci. USA 96, 98039808.
  • Oh L. Y, Larsen P. H., Krekoski C. A., Edwards D. R., Donovan F., Werb Z. and Yong V. W. (1999) Matrix metalloproteinase-9/gelatinase B is required for process outgrowth by oligodendrocytes. J. Neurosci. 19, 84648475.
  • Rosell A., Cuadrado E., Ortega-Aznar A., Hernández-Guillamon M., Lo E. H. and Montaner J. (2008) MMP-9-positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke 39, 11211126.
  • Saitoh T., Nakano H., Yamamoto N. and Yamaoka S. (2002) Lymphotoxin-beta receptor mediates NEMO-independent NF-kappaB activation. FEBS Lett. 532, 4551.
  • Saitoh T., Nakayama M., Nakano H., Yagita H., Yamamoto N. and Yamaoka S. (2003) TWEAK induces NF-kappaB2 p100 processing and long lasting NF-kappaB activation. J. Biol. Chem. 278, 3600536012.
  • Sandoval K. E and Witt K. A. (2008) Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol. Dis. 32, 200219.
  • Supanc V., Biloglav Z., Kes V. B. and Demarin V. (2011) Role of cell adhesion molecules in acute ischemic stroke. Ann. Saudi Med. 31, 365370.
  • Tang E. D and Wang C. Y. (2010) TRAF5 is a downstream target of MAVS in antiviral innate immune signaling. PLoS ONE 5, e9172.
  • Tao T., Cheng C., Ji Y., Xu G., Zhang J., Zhang L. and Shen A. (2012) Numbl inhibits glioma cell migration and invasion by suppressing TRAF5-mediated NF-κB activation. Mol. Biol. Cell 23, 26352644.
  • Terao S., Yilmaz G., Stokes K. Y., Russell J., Ishikawa M., Kawase T. and Granger D. N. (2008) Blood cell-derived RANTES mediates cerebral microvascular dysfunction, inflammation, and tissue injury after focal ischemia-reperfusion Stroke 39, 25602570.
  • Tu J. V. (2010) Reducing the global burden of stroke: INTERSTROKE. Lancet 376, 7475.
  • Uyama O., Okamura N., Yanase M., Narita M., Kawabata K. and Sugita M. (1988) Quantitative evaluation of vascular permeability in the gerbil brain after transient ischemia using Evans blue fluorescence. J. Cereb. Blood Flow Metab. 8, 282284.
  • Wang L., Lu Y., Deng S., Zhang Y., Yang L., Guan Y, Matozaki T., Ohnishi H., Jiang H. and Li H. (2012a) SHPS-1 deficiency induces robust neuroprotection against experimental stroke by attenuating oxidative stress. J. Neurochem. 122, 834843.
  • Wang L., Deng S., Lu Y., Zhang Y., Yang L., Guan Y., Jiang H. and Li H. (2012b) Increased inflammation and brain injury after transient focal cerebral ischemia in activating transcription factor 3 knockout mice. Neuroscience 220, 100108.
  • Won C. K, Ji H. H and Koh P. O. (2006) Estradiol prevents the focal cerebral ischemic injury-induced decrease of forkhead transcription factors phosphorylation. Neurosci. Lett. 398, 3943.
  • Xie P., Poovassery J., Stunz L. L., Smith S. M, Schultz M. L., Carlin L. E and Bishop G. A. (2011) Enhanced Toll-like receptor (TLR) responses of TNFR-associated factor 3 (TRAF3)-deficient B lymphocytes. J. Leukoc. Biol. 90, 11491157.
  • Yang Y., Candelario-Jalil E., Thompson J. F., Cuadrado E., Estrada E. Y., Rosell A., Montaner J. and Rosenberg G. A. (2010) Increased intranuclear matrix metalloproteinase activity in neurons interferes with oxidative DNA repair in focal cerebral ischemia. J. Neurochem. 112, 134149.
  • Zhan L., Wang T., Li W., Xu Z. C., Sun W. and Xu E. (2010) Activation of Akt/FoxO signaling pathway contributes to induction of neuroprotection against transient global cerebral ischemia by hypoxic pre-conditioning in adult rats. J. Neurochem. 114, 897908.
  • Zhou Q. and Geahlen R. L. (2009) The protein-tyrosine kinase Syk interacts with TRAF-interacting protein TRIP in breast epithelial cells. Oncogene 28, 13481356.
  • Zirlik A., Bavendiek U., Libby P. et al. (2007) TRAF-1, -2, -3, -5, and -6 are induced in atherosclerotic plaques and differentially mediate proinflammatory functions of CD40L in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 27, 11011107.
  • del Zoppo G. J, Frankowski H., Gu Y. H., Osada T., Kanazawa M., Milner R., Wang X., Hosomi N., Mabuchi T. and Koziol J. A. (2012) Microglial cell activation is a source of metalloproteinase generation during hemorrhagic transformation. J. Cereb. Blood Flow Metab. 32, 919932.
  • Zotti T., Vito P. and Stilo R. (2012) The seventh ring: exploring TRAF7 functions. J. Cell. Physiol. 227, 12801284.