SEARCH

SEARCH BY CITATION

References

  • d'Abramo C., Ricciarelli R., Pronzato M. A. and Davies P. (2006) Troglitazone, a peroxisome proliferator-activated receptor-gamma agonist, decreases tau phosphorylation in CHOtau4R cells. J. Neurochem. 98, 10681077.
  • Alonso Adel C., Mederlyova A., Novak M., Grundke-Iqbal I. and Iqbal K. (2004) Promotion of hyperphosphorylation by frontotemporal dementia tau mutations. J. Biol. Chem. 279, 3487334881.
  • Augustinack J. C., Schneider A., Mandelkow E. M. and Hyman B. T. (2002) Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer's disease. Acta Neuropathol. 103, 2635.
  • Blanquicett C., Roman J. and Hart C. M. (2008) Thiazolidinediones as anti-cancer agents. Cancer Ther. 6, 2534.
  • Camins A., Verdaguer E., Folch J., Canudas A. M. and Pallas M. (2006) The role of CDK5/P25 formation/inhibition in neurodegeneration. Drug News Perspect. 19, 453460.
  • Cho D. H., Choi Y. J., Jo S. A., Ryou J., Kim J. Y., Chung J. and Jo I. (2006) Troglitazone acutely inhibits protein synthesis in endothelial cells via a novel mechanism involving protein phosphatase 2A-dependent p70 S6 kinase inhibition. Am. J. Physiol. Cell Physiol. 291, C317C326.
  • Cho D. H., Seo J., Park J. H., Jo C., Choi Y. J., Soh J. W. and Jo I. (2010) Cyclin-dependent kinase 5 phosphorylates endothelial nitric oxide synthase at serine 116. Hypertension 55, 345352.
  • Crews L., Patrick C., Adame A., Rockenstein E. and Masliah E. (2011) Modulation of aberrant CDK5 signaling rescues impaired neurogenesis in models of Alzheimer's disease. Cell Death Dis. 2, e120.
  • De Felice F. G., Vieira M. N., Bomfim T. R., et al. (2009) Protection of synapses against Alzheimer's-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc. Natl Acad. Sci. USA 106, 19711976.
  • Derosa G. and Maffioli P. (2012) Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists on glycemic control, lipid profile and cardiovascular risk. Curr. Mol. Pharmacol. 5, 272281.
  • Escribano L., Simon A. M., Gimeno E., et al. (2010) Rosiglitazone rescues memory impairment in Alzheimer's transgenic mice: mechanisms involving a reduced amyloid and tau pathology. Neuropsychopharmacology 35, 15931604.
  • Feinstein D. L., Spagnolo A., Akar C., Weinberg G., Murphy P., Gavrilyuk V. and Dello Russo C. (2005) Receptor-independent actions of PPAR thiazolidinedione agonists: is mitochondrial function the key? Biochem. Pharmacol. 70, 177188.
  • Flaquer M., Lloberas N., Franquesa M., Torras J., Vidal A., Rosa J. L., Herrero-Fresneda I., Grinyo J. M. and Cruzado J. M. (2010) The combination of sirolimus and rosiglitazone produces a renoprotective effect on diabetic kidney disease in rats. Life Sci. 87, 147153.
  • Galli A., Mello T., Ceni E., Surrenti E. and Surrenti C. (2006) The potential of antidiabetic thiazolidinediones for anticancer therapy. Expert Opin. Investig. Drugs 15, 10391049.
  • Gong C. X. and Iqbal K. (2008) Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Curr. Med. Chem. 15, 23212328.
  • Gong C. X., Liu F., Grundke-Iqbal I. and Iqbal K. (2005) Post-translational modifications of tau protein in Alzheimer's disease. J. Neural. Transm. 112, 813838.
  • Goodyear S. and Sharma M. C. (2007) Roscovitine regulates invasive breast cancer cell (MDA-MB231) proliferation and survival through cell cycle regulatory protein cdk5. Exp. Mol. Pathol. 82, 2532.
  • Hanger D. P., Betts J. C., Loviny T. L., Blackstock W. P. and Anderton B. H. (1998) New phosphorylation sites identified in hyperphosphorylated tau (paired helical filament-tau) from Alzheimer's disease brain using nanoelectrospray mass spectrometry. J. Neurochem. 71, 24652476.
  • Hanger D. P., Anderton B. H. and Noble W. (2009) Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol. Med. 15, 112119.
  • Hauner H. (2002) The mode of action of thiazolidinediones. Diabetes Metab. Res. Rev. 18(Suppl 2), S10S15.
  • Hernandez F., Perez M., de Barreda E. G., Goni-Oliver P. and Avila J. (2008) Tau as a molecular marker of development, aging and neurodegenerative disorders. Curr. Aging Sci. 1, 5661.
  • Iqbal K., Liu F., Gong C. X. and Grundke-Iqbal I. (2010) Tau in Alzheimer disease and related tauopathies. Curr. Alzheimer Res. 7, 656664.
  • Janson J., Laedtke T., Parisi J. E., O'Brien P., Petersen R. C. and Butler P. C. (2004) Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53, 474481.
  • Jessberger S., Gage F. H., Eisch A. J. and Lagace D. C. (2009) Making a neuron: Cdk5 in embryonic and adult neurogenesis. Trends Neurosci. 32, 575582.
  • Krystof V. and Uldrijan S. (2010) Cyclin-dependent kinase inhibitors as anticancer drugs. Curr. Drug Targets 11, 291302.
  • Kwon K. J., Kim J. N., Kim M. K., Lee J., Ignarro L. J., Kim H. J., Shin C. Y. and Han S. H. (2011) Melatonin synergistically increases resveratrol-induced heme oxygenase-1 expression through the inhibition of ubiquitin-dependent proteasome pathway: a possible role in neuroprotection. J. Pineal Res. 50, 110123.
  • Lalioti V., Pulido D. and Sandoval I. V. (2010) Cdk5, the multifunctional surveyor. Cell Cycle 9, 284311.
  • Landreth G., Jiang Q., Mandrekar S. and Heneka M. (2008) PPARgamma agonists as therapeutics for the treatment of Alzheimer's disease. Neurotherapeutics 5, 481489.
  • Lee M. S. and Tsai L. H. (2003) Cdk5: one of the links between senile plaques and neurofibrillary tangles? J. Alzheimers Dis. 5, 127137.
  • Lee V. M., Goedert M. and Trojanowski J. Q. (2001) Neurodegenerative tauopathies. Annu. Rev. Neurosci. 24, 11211159.
  • Lovestone S. and Reynolds C. H. (1997) The phosphorylation of tau: a critical stage in neurodevelopment and neurodegenerative processes. Neuroscience 78, 309324.
  • Lucas J. J., Hernandez F., Gomez-Ramos P., Moran M. A., Hen R. and Avila J. (2001) Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J. 20, 2739.
  • Luna-Munoz J., Garcia-Sierra F., Falcon V., Menendez I., Chavez-Macias L. and Mena R. (2005) Regional conformational change involving phosphorylation of tau protein at the Thr231, precedes the structural change detected by Alz-50 antibody in Alzheimer's disease. J. Alzheimers Dis. 8, 2941.
  • Maeshiba Y., Kiyota Y., Yamashita K., Yoshimura Y., Motohashi M. and Tanayama S. (1997) Disposition of the new antidiabetic agent pioglitazone in rats, dogs, and monkeys. Arzneimittelforschung 47, 2935.
  • Noble W., Olm V., Takata K., et al. (2003) Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron 38, 555565.
  • Ondrey F. (2009) Peroxisome proliferator-activated receptor gamma pathway targeting in carcinogenesis: implications for chemoprevention. Clin. Cancer Res. 15, 28.
  • O'Reilly J. A. and Lynch M. (2012) Rosiglitazone improves spatial memory and decreases insoluble Abeta(1–42) in APP/PS1 mice. J. Neuroimmune Pharmacol. 7, 140144.
  • Patrick G. N., Zhou P., Kwon Y. T., Howley P. M. and Tsai L. H. (1998) p35, the neuronal-specific activator of cyclin-dependent kinase 5 (Cdk5) is degraded by the ubiquitin-proteasome pathway. J. Biol. Chem. 273, 2405724064.
  • Pedersen W. A., McMillan P. J., Kulstad J. J., Leverenz J. B., Craft S. and Haynatzki G. R. (2006) Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice. Exp. Neurol. 199, 265273.
  • Schwartz S., Raskin P., Fonseca V. and Graveline J. F. (1998) Effect of troglitazone in insulin-treated patients with type II diabetes mellitus. Troglitazone and Exogenous Insulin Study Group. N. Engl. J. Med. 338, 861866.
  • Searcy J. L., Phelps J. T., Pancani T., et al. (2012) Long-term pioglitazone treatment improves learning and attenuates pathological markers in a mouse model of Alzheimer's disease. J. Alzheimers Dis. 30, 943961.
  • Sengupta A., Kabat J., Novak M., Wu Q., Grundke-Iqbal I. and Iqbal K. (1998) Phosphorylation of tau at both Thr 231 and Ser 262 is required for maximal inhibition of its binding to microtubules. Arch. Biochem. Biophys. 357, 299309.
  • Sengupta A., Grundke-Iqbal I. and Iqbal K. (2006) Regulation of phosphorylation of tau by protein kinases in rat brain. Neurochem. Res. 31, 14731480.
  • Su S. C. and Tsai L. H. (2011) Cyclin-dependent kinases in brain development and disease. Annu. Rev. Cell Dev. Biol. 27, 465491.
  • Takashima A. (2010) Tau aggregation is a therapeutic target for Alzheimer's disease. Curr. Alzheimer Res. 7, 665669.
  • To A. W., Ribe E. M., Chuang T. T., Schroeder J. E. and Lovestone S. (2011) The epsilon3 and epsilon4 alleles of human APOE differentially affect tau phosphorylation in hyperinsulinemic and pioglitazone treated mice. PLoS ONE 6, e16991.
  • Wei S., Yang H. C., Chuang H. C., Yang J., Kulp S. K., Lu P. J., Lai M. D. and Chen C. S. (2008) A novel mechanism by which thiazolidinediones facilitate the proteasomal degradation of cyclin D1 in cancer cells. J. Biol. Chem. 283, 2675926770.
  • Yoon S. Y., Park J. S., Choi J. E., Choi J. M., Lee W. J., Kim S. W. and Kim D. H. (2010) Rosiglitazone reduces tau phosphorylation via JNK inhibition in the hippocampus of rats with type 2 diabetes and tau transfected SH-SY5Y cells. Neurobiol. Dis. 40, 449455.
  • Zhao W. Q. and Townsend M. (2009) Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer's disease. Biochim. Biophys. Acta 1792, 482496.
  • Zhu G., Fujii K., Belkina N., Liu Y., James M., Herrero J. and Shaw S. (2005) Exceptional disfavor for proline at the P + 1 position among AGC and CAMK kinases establishes reciprocal specificity between them and the proline-directed kinases. J. Biol. Chem. 280, 1074310748.
  • Zukerberg L. R., Patrick G. N., Nikolic M., et al. (2000) Cables links Cdk5 and c-Abl and facilitates Cdk5 tyrosine phosphorylation, kinase upregulation, and neurite outgrowth. Neuron 26, 633646.