SEARCH

SEARCH BY CITATION

References

  • Albasanz J. L., Dalfo E., Ferrer I. and Martin M. (2005) Impaired metabotropic glutamate receptor/phospholipase C signaling pathway in the cerebral cortex in Alzheimer's disease and dementia with Lewy bodies correlates with stage of Alzheimer's-disease-related changes. Neurobiol. Dis. 20, 685693.
  • Altmeppen H. C., Prox J., Puig B. et al. (2011) Lack of a-disintegrin-and-metalloproteinase ADAM10 leads to intracellular accumulation and loss of shedding of the cellular prion protein in vivo. Mol. Neurodegener. 6, 36.
  • Ashe K. H. and Zahs K. R. (2010) Probing the biology of Alzheimer's disease in mice. Neuron 66, 631645.
  • Balducci C., Beeg M., Stravalaci M. et al. (2010) Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein. Proc. Natl Acad. Sci. USA 107, 22952300.
  • Barry A. E., Klyubin I., Mc Donald J. M., Mably A. J., Farrell M. A., Scott M., Walsh D. M. and Rowan M. J. (2011) Alzheimer's disease brain-derived amyloid-beta-mediated inhibition of LTP in vivo is prevented by immunotargeting cellular prion protein. J. Neurosci. 31, 72597263.
  • Beland M. and Roucou X. (2012) The prion protein unstructured N-terminal region is a broad-spectrum molecular sensor with diverse and contrasting potential functions. J. Neurochem. 120, 853868.
  • Beland M., Motard J., Barbarin A. and Roucou X. (2012) PrPC Homodimerization Stimulates the Production of PrPC Cleaved Fragments PrPN1 and PrPC1. J. Neurosci. 32, 1325513263.
  • Benilova I. and De S. B. (2010) Prion protein in Alzheimer's pathogenesis: a hot and controversial issue. EMBO Mol. Med. 2, 289290.
  • Beraldo F. H., Arantes C. P., Santos T. G. et al. (2011) Metabotropic glutamate receptors transduce signals for neurite outgrowth after binding of the prion protein to laminin gamma1 chain. FASEB J. 25, 265279.
  • Blaabjerg M., Fang L., Zimmer J. and Baskys A. (2003) Neuroprotection against NMDA excitotoxicity by group I metabotropic glutamate receptors is associated with reduction of NMDA stimulated currents. Exp. Neurol. 183, 573580.
  • Bomfim T. R., Forny-Germano L., Sathler L. B. et al. (2012) An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer's disease-associated Abeta oligomers. J. Clin. Invest. 122, 13391353.
  • Caetano F. A., Lopes M. H., Hajj G. N. et al. (2008) Endocytosis of prion protein is required for ERK1/2 signaling induced by stress-inducible protein 1. J. Neurosci. 28, 66916702.
  • Caetano F. A., Beraldo F. H., Hajj G. N. et al. (2011) Amyloid-beta oligomers increase the localization of prion protein at the cell surface. J. Neurochem. 117, 538553.
  • Calella A. M., Farinelli M., Nuvolone M., Mirante O., Moos R., Falsig J., Mansuy I. M. and Aguzzi A. (2010) Prion protein and Abeta-related synaptic toxicity impairment. EMBO Mol. Med. 2, 306314.
  • Chen S. G., Teplow D. B., Parchi P., Teller J. K., Gambetti P. and Autilio-Gambetti L. (1995) Truncated forms of the human prion protein in normal brain and in prion diseases. J. Biol. Chem. 270, 1917319180.
  • Chen S., Yadav S. P. and Surewicz W. K. (2010) Interaction between human prion protein and amyloid-beta (Abeta) oligomers: role OF N-terminal residues. J. Biol. Chem. 285, 2637726383.
  • Chung E., Ji Y., Sun Y., Kascsak R. J., Kascsak R. B., Mehta P. D., Strittmatter S. M. and Wisniewski T. (2010) Anti-PrPC monoclonal antibody infusion as a novel treatment for cognitive deficits in an Alzheimer's disease model mouse. BMC Neurosci. 11, 130.
  • Cisse M. A., Sunyach C., Lefranc-Jullien S., Postina R., Vincent B. and Checler F. (2005) The disintegrin ADAM9 indirectly contributes to the physiological processing of cellular prion by modulating ADAM10 activity. J. Biol. Chem. 280, 4062440631.
  • Cosgrove K. E., Galvan E. J., Barrionuevo G. and Meriney S. D. (2011) mGluRs modulate strength and timing of excitatory transmission in hippocampal area CA3. Mol. Neurobiol. 44, 93101.
  • De Felice F. G. (2013) Alzheimer's disease and insulin resistance: translating basic science into clinical applications. J. Clin. Invest. 123, 531539.
  • De Felice F. G., Vieira M. N., Bomfim T. R., Decker H., Velasco P. T., Lambert M. P., Viola K. L., Zhao W. Q., Ferreira S. T. and Klein W. L. (2009) Protection of synapses against Alzheimer's-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc. Natl Acad. Sci. USA 106, 19711976.
  • Decker H., Jurgensen S., Adrover M. F., Brito-Moreira J., Bomfim T. R., Klein W. L., Epstein A. L., De Felice F. G., Jerusalinsky D. and Ferreira S. T. (2010) N-methyl-D-aspartate receptors are required for synaptic targeting of Alzheimer's toxic amyloid-beta peptide oligomers. J. Neurochem. 115, 15201529.
  • Dron M., Moudjou M., Chapuis J., Salamat M. K., Bernard J., Cronier S., Langevin C. and Laude H. (2010) Endogenous proteolytic cleavage of disease-associated prion protein to produce C2 fragments is strongly cell- and tissue-dependent. J. Biol. Chem. 285, 1025210264.
  • Ferreira S. T. and Klein W. L. (2011) The Abeta oligomer hypothesis for synapse failure and memory loss in Alzheimer's disease. Neurobiol. Learn. Mem. 96, 529543.
  • Ferretti M. T., Partridge V., Leon W. C. et al. (2011) Transgenic mice as a model of pre-clinical Alzheimer's disease. Curr. Alzheimer Res. 8, 423.
  • Fevrier B., Vilette D., Archer F., Loew D., Faigle W., Vidal M., Laude H. and Raposo G. (2004) Cells release prions in association with exosomes. Proc. Natl Acad. Sci. USA 101, 96839688.
  • Fischer M., Rulicke T., Raeber A., Sailer A., Moser M., Oesch B., Brandner S., Aguzzi A. and Weissmann C. (1996) Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J. 15, 12551264.
  • Freir D. B., Nicoll A. J., Klyubin I., Panico S., Mc Donald J. M., Risse E., Asante E. A., Farrow M. A., Sessions R. B., Saibil H. R., Clarke A. R., Rowan M. J., Walsh D. M. and Collinge J. (2011) Interaction between prion protein and toxic amyloid beta assemblies can be therapeutically targeted at multiple sites. Nat. Commun. 2, 336.
  • Garcia-Alloza M., Prada C., Lattarulo C., Fine S., Borrelli L. A., Betensky R., Greenberg S. M., Frosch M. P. and Bacskai B. J. (2009) Matrix metalloproteinase inhibition reduces oxidative stress associated with cerebral amyloid angiopathy in vivo in transgenic mice. J. Neurochem. 109, 16361647.
  • Gimbel D. A., Nygaard H. B., Coffey E. E., Gunther E. C., Lauren J., Gimbel Z. A. and Strittmatter S. M. (2010) Memory impairment in transgenic Alzheimer mice requires cellular prion protein. J. Neurosci. 30, 63676374.
  • Guillot-Sestier M. V., Sunyach C., Druon C., Scarzello S. and Checler F. (2009) The alpha-secretase-derived N-terminal product of cellular prion, N1, displays neuroprotective function in vitro and in vivo. J. Biol. Chem. 284, 3597335986.
  • Guillot-Sestier M. V., Sunyach C., Ferreira S. T., Marzolo M. P., Bauer C., Thevenet A. and Checler F. (2012) alpha-Secretase-derived fragment of cellular prion, N1, protects against monomeric and oligomeric amyloid beta (Abeta)-associated cell death. J. Biol. Chem. 287, 50215032.
  • Gutwein P., Stoeck A., Riedle S. et al. (2005) Cleavage of L1 in exosomes and apoptotic membrane vesicles released from ovarian carcinoma cells. Clin. Cancer Res. 11, 24922501.
  • Guzman M. S., De Jaeger X., Raulic S. et al. (2011) Elimination of the vesicular acetylcholine transporter in the striatum reveals regulation of behaviour by cholinergic-glutamatergic co-transmission. PLoS Biol. 9, e1001194.
  • Jankowsky J. L., Fadale D. J., Anderson J. et al. (2004) Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum. Mol. Genet. 13, 159170.
  • Kessels H. W., Nguyen L. N., Nabavi S. and Malinow R. (2010) The prion protein as a receptor for amyloid-beta. Nature 466, E3E4.
  • Klein W. L. (2002) Abeta toxicity in Alzheimer's disease: globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem. Int. 41, 345352.
  • Lambert M. P., Barlow A. K., Chromy B. A. et al. (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc. Natl Acad. Sci. USA 95, 64486453.
  • Lauren J., Gimbel D. A., Nygaard H. B., Gilbert J. W. and Strittmatter S. M. (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457, 11281132.
  • Lewis H. D., Beher D., Smith D. et al. (2004) Novel aspects of accumulation dynamics and A beta composition in transgenic models of AD. Neurobiol. Aging 25, 11751185.
  • Li S., Hong S., Shepardson N. E., Walsh D. M., Shankar G. M. and Selkoe D. (2009) Soluble oligomers of amyloid Beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62, 788801.
  • Lichtenthaler S. F. (2011) Alpha-secretase in Alzheimer's disease: molecular identity, regulation and therapeutic potential. J. Neurochem. 116, 1021.
  • Linden R., Martins V. R., Prado M. A., Cammarota M., Izquierdo I. and Brentani R. R. (2008) Physiology of the prion protein. Physiol. Rev. 88, 673728.
  • Lindner A. B. and Demarez A. (2009) Protein aggregation as a paradigm of aging. Biochim. Biophys. Acta 1790, 980996.
  • Lopes M. H., Hajj G. N., Muras A. G., Mancini G. L., Castro R. M., Ribeiro K. C., Brentani R. R., Linden R. and Martins V. R. (2005) Interaction of cellular prion and stress-inducible protein 1 promotes neuritogenesis and neuroprotection by distinct signaling pathways. J. Neurosci. 25, 1133011339.
  • Luscher C. and Huber K. M. (2010) Group 1 mGluR-dependent synaptic long-term depression: mechanisms and implications for circuitry and disease. Neuron 65, 445459.
  • Magdesian M. H., Nery A. A., Martins A. H., Juliano M. A., Juliano L., Ulrich H. and Ferreira S. T. (2005) Peptide blockers of the inhibition of neuronal nicotinic acetylcholine receptors by amyloid beta. J. Biol. Chem. 280, 3108531090.
  • Mange A., Beranger F., Peoc'h K., Onodera T., Frobert Y. and Lehmann S. (2004) Alpha- and beta- cleavages of the amino-terminus of the cellular prion protein. Biol. Cell 96, 125132.
  • Martins V. R., Linden R., Prado M. A., Walz R., Sakamoto A. C., Izquierdo I. and Brentani R. R. (2002) Cellular prion protein: on the road for functions. FEBS Lett. 512, 2528.
  • Martins-Silva C., De Jaeger X., Guzman M. S., Lima R. D., Santos M. S., Kushmerick C., Gomez M. V., Caron M. G., Prado M. A. and Prado V. F. (2011) Novel strains of mice deficient for the vesicular acetylcholine transporter: insights on transcriptional regulation and control of locomotor behavior. PLoS One 6, e17611.
  • McMahon H. E., Mange A., Nishida N., Creminon C., Casanova D. and Lehmann S. (2001) Cleavage of the amino terminus of the prion protein by reactive oxygen species. J. Biol. Chem. 276, 22862291.
  • Morales R., Estrada L. D., Diaz-Espinoza R., Morales-Scheihing D., Jara M. C., Castilla J. and Soto C. (2010) Molecular cross talk between misfolded proteins in animal models of Alzheimer's and prion diseases. J. Neurosci. 30, 45284535.
  • Parameshwaran K., Dhanasekaran M. and Suppiramaniam V. (2008) Amyloid beta peptides and glutamatergic synaptic dysregulation. Exp. Neurol. 210, 713.
  • Pellegrini-Giampietro D. E. (2003) The distinct role of mGlu1 receptors in post-ischemic neuronal death. Trends Pharmacol. Sci. 24, 461470.
  • Prusiner S. B. (1998) Prions. Proc. Natl Acad. Sci. USA 95, 1336313383.
  • Reiserer R. S., Harrison F. E., Syverud D. C. and McDonald M. P. (2007) Impaired spatial learning in the APPSwe + PSEN1DeltaE9 bigenic mouse model of Alzheimer's disease. Genes Brain Behav. 6, 5465.
  • Renner M., Lacor P. N., Velasco P. T., Xu J., Contractor A., Klein W. L. and Triller A. (2010) Deleterious effects of amyloid beta oligomers acting as an extracellular scaffold for mGluR5. Neuron 66, 739754.
  • Sagara Y. and Schubert D. (1998) The activation of metabotropic glutamate receptors protects nerve cells from oxidative stress. J. Neurosci. 18, 66626671.
  • Savonenko A., Xu G. M., Melnikova T., Morton J. L., Gonzales V., Wong M. P., Price D. L., Tang F., Markowska A. L. and Borchelt D. R. (2005) Episodic-like memory deficits in the APPswe/PS1dE9 mouse model of Alzheimer's disease: relationships to beta-amyloid deposition and neurotransmitter abnormalities. Neurobiol. Dis. 18, 602617.
  • Selkoe D. J. (2011) Alzheimer's disease. Cold Spring Harb. Perspect. Biol. 3, 116.
  • Snyder E. M., Nong Y., Almeida C. G. et al. (2005) Regulation of NMDA receptor trafficking by amyloid-beta. Nat. Neurosci. 8, 10511058.
  • Stoeck A., Keller S., Riedle S., Sanderson M. P., Runz S., Le N. F., Gutwein P., Ludwig A., Rubinstein E. and Altevogt P. (2006) A role for exosomes in the constitutive and stimulus-induced ectodomain cleavage of L1 and CD44. Biochem. J. 393, 609618.
  • Taylor D. R., Parkin E. T., Cocklin S. L., Ault J. R., Ashcroft A. E., Turner A. J. and Hooper N. M. (2009) Role of ADAMs in the ectodomain shedding and conformational conversion of the prion protein. J. Biol. Chem. 284, 2259022600.
  • Vincent A. M. and Maiese K. (2000) The metabotropic glutamate system promotes neuronal survival through distinct pathways of programmed cell death. Exp. Neurol. 166, 6582.
  • Vincent B., Beaudet A., Dauch P., Vincent J. P. and Checler F. (1996) Distinct properties of neuronal and astrocytic endopeptidase 3.4.24.16: a study on differentiation, subcellular distribution, and secretion processes. J. Neurosci. 16, 50495059.
  • Vincent B., Paitel E., Saftig P., Frobert Y., Hartmann D., De S. B., Grassi J., Lopez-Perez E. and Checler F. (2001) The disintegrins ADAM10 and TACE contribute to the constitutive and phorbol ester-regulated normal cleavage of the cellular prion protein. J. Biol. Chem. 276, 3774337746.
  • Walmsley A. R., Watt N. T., Taylor D. R., Perera W. S. and Hooper N. M. (2009) alpha-cleavage of the prion protein occurs in a late compartment of the secretory pathway and is independent of lipid rafts. Mol. Cell. Neurosci. 40, 242248.
  • Walsh D. M. and Selkoe D. J. (2007) A beta oligomers - a decade of discovery. J. Neurochem. 101, 11721184.
  • Wang H. Y., Lee D. H., D'Andrea M. R., Peterson P. A., Shank R. P. and Reitz A. B. (2000) beta-Amyloid(1–42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer's disease pathology. J. Biol. Chem. 275, 56265632.
  • Westergard L., Turnbaugh J. A. and Harris D. A. (2011) A naturally occurring C-terminal fragment of the prion protein (PrP) delays disease and acts as a dominant-negative inhibitor of PrPSc formation. J. Biol. Chem. 286, 4423444242.
  • Xie L., Helmerhorst E., Taddei K., Plewright B., Van B. W. and Martins R. (2002) Alzheimer's beta-amyloid peptides compete for insulin binding to the insulin receptor. J. Neurosci. 22, RC221.
  • Zanata S. M., Lopes M. H., Mercadante A. F. et al. (2002) Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J. 21, 33073316.
  • Zhao W. Q., Lacor P. N., Chen H., Lambert M. P., Quon M. J., Krafft G. A. and Klein W. L. (2009) Insulin receptor dysfunction impairs cellular clearance of neurotoxic oligomeric a{beta}. J. Biol. Chem. 284, 1874218753.
  • Zhu P., DeCoster M. A. and Bazan N. G. (2004) Interplay among platelet-activating factor, oxidative stress, and group I metabotropic glutamate receptors modulates neuronal survival. J. Neurosci. Res. 77, 525531.