SEARCH

SEARCH BY CITATION

References

  • Akar C. A. and Feinstein D. L. (2009) Modulation of inducible nitric oxide synthase expression by sumoylation. J. Neuroinflammation 6, 12.
  • Bae S. H., Jeong J. W., Park J. A., Kim S. H., Bae M. K., Choi S. J. and Kim K. W. (2004) Sumoylation increases HIF-1alpha stability and its transcriptional activity. Biochem. Biophys. Res. Commun. 324, 394400.
  • Becker J., Barysch S. V., Karaca S., Dittner C., Hsiao H. H., Diaz M. B., Herzig S., Urlaub H. and Melchior F. (2013) Detecting endogenous SUMO targets in mammalian cells and tissues. Nat. Struct. Mol. Biol. 20, 525531.
  • Benson M. D., Li Q. J., Kieckhafer K., Dudek D., Whorton M. R., Sunahara R. K., Iniguez-Lluhi J. A. and Martens J. R. (2007) SUMO modification regulates inactivation of the voltage-gated potassium channel Kv1.5. Proc. Natl Acad. Sci. USA 104, 18051810.
  • Bergink S. and Jentsch S. (2009) Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458, 461467.
  • Berta M. A., Mazure N., Hattab M., Pouyssegur J. and Brahimi-Horn M. C. (2007) SUMOylation of hypoxia-inducible factor-1alpha reduces its transcriptional activity. Biochem. Biophys. Res. Commun. 360, 646652.
  • Bossis G. and Melchior F. (2006) Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol. Cell 21, 349357.
  • Branston N. M., Symon L., Crockard H. A. and Pasztor E. (1974) Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon. Exp. Neurol. 45, 195208.
  • Brunet Simioni M., De Thonel A., Hammann A. et al. (2009) Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity. Oncogene 28, 33323344.
  • Cai Q., Verma S. C., Kumar P., Ma M. and Robertson E. S. (2010) Hypoxia inactivates the VHL tumor suppressor through PIASy-mediated SUMO modification. PLoS ONE 5, e9720.
  • Cajee U. F., Hull R. and Ntwasa M. (2012) Modification by ubiquitin-like proteins: significance in apoptosis and autophagy pathways. Int. J. Mol. Sci. 13, 1180411831.
  • Caraci F., Battaglia G., Sortino M. A., Spampinato S., Molinaro G., Copani A., Nicoletti F. and Bruno V. (2012) Metabotropic glutamate receptors in neurodegeneration/neuroprotection: Still a hot topic? Neurochem. Int. 61, 559565.
  • Carbia-Nagashima A., Gerez J., Perez-Castro C., Paez-Pereda M., Silberstein S., Stalla G. K., Holsboer F. and Arzt E. (2007) RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell 131, 309323.
  • Carswell H. V., Macrae I. M., Gallagher L., Harrop E. and Horsburgh K. J. (2004) Neuroprotection by a selective estrogen receptor beta agonist in a mouse model of global ischemia. Am. J. Physiol. Heart Circ. Physiol. 287, H1501H1504.
  • Chao X. D., Fei F. and Fei Z. (2010) The role of excitatory amino acid transporters in cerebral ischemia. Neurochem. Res. 35, 12241230.
  • Cheng J., Kang X., Zhang S. and Yeh E. T. (2007) SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 131, 584595.
  • Choi A. M., Ryter S. W. and Levine B. (2013) Autophagy in human health and disease. N. Engl. J. Med. 368, 651662.
  • Cimarosti H. and Henley J. M. (2008) Investigating the mechanisms underlying neuronal death in ischemia using in vitro oxygen-glucose deprivation: potential involvement of protein SUMOylation. Neuroscientist 14, 626636.
  • Cimarosti H., Lindberg C., Bomholt S. F., Ronn L. C. and Henley J. M. (2008) Increased protein SUMOylation following focal cerebral ischemia. Neuropharmacology 54, 280289.
  • Cimarosti H., Ashikaga E., Jaafari N., Dearden L., Rubin P., Wilkinson K. A. and Henley J. M. (2012) Enhanced SUMOylation and SENP-1 protein levels following oxygen and glucose deprivation in neurones. J. Cereb. Blood Flow Metab. 32, 1722.
  • Collino M., Thiemermann C., Mastrocola R. et al. (2008) Treatment with the glycogen synthase kinase-3beta inhibitor, TDZD-8, affects transient cerebral ischemia/reperfusion injury in the rat hippocampus. Shock 30, 299307.
  • Culver C., Sundqvist A., Mudie S., Melvin A., Xirodimas D. and Rocha S. (2010) Mechanism of hypoxia-induced NF-kappaB. Mol. Cell. Biol. 30, 49014921.
  • Da Silva-Ferrada E., Lopitz-Otsoa F., Lang V., Rodriguez M. S. and Matthiesen R. (2012) Strategies to identify recognition signals and targets of SUMOylation. Biochem. Res. Int. 2012, 875148.
  • Dai X. Q., Kolic J., Marchi P., Sipione S. and Macdonald P. E. (2009) SUMOylation regulates Kv2.1 and modulates pancreatic beta-cell excitability. J. Cell Sci. 122, 775779.
  • Datwyler A. L., Lattig-Tunnemann G., Yang W., Paschen W., Lee S. L., Dirnagl U., Endres M. and Harms C. (2011) SUMO2/3 conjugation is an endogenous neuroprotective mechanism. J. Cereb. Blood Flow Metab. 31, 21522159.
  • Davies C. and Tournier C. (2012) Exploring the function of the JNK (c-Jun N-terminal kinase) signalling pathway in physiological and pathological processes to design novel therapeutic strategies. Biochem. Soc. Trans. 40, 8589.
  • Desterro J. M., Rodriguez M. S. and Hay R. T. (1998) SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol. Cell 2, 233239.
  • Dutting E., Schroder-Kress N., Sticht H. and Enz R. (2011) SUMO E3 ligases are expressed in the retina and regulate SUMOylation of the metabotropic glutamate receptor 8b. Biochem. J. 435, 365371.
  • Es-Salah-Lamoureux Z., Steele D. F. and Fedida D. (2010) Research into the therapeutic roles of two-pore-domain potassium channels. Trends Pharmacol. Sci. 31, 587595.
  • Eun Jeoung L., Sung Hee H., Jaesun C., Sung Hwa S., Kwang Hum Y., Min Kyoung K., Tae Yoon P. and Sang Sun K. (2008) Regulation of glycogen synthase kinase 3beta functions by modification of the small ubiquitin-like modifier. Open Biochem. J. 2, 6776.
  • Feliciangeli S., Bendahhou S., Sandoz G., Gounon P., Reichold M., Warth R., Lazdunski M., Barhanin J. and Lesage F. (2007) Does sumoylation control K2P1/TWIK1 background K+ channels? Cell 130, 563569.
  • Feligioni M., Nishimune A. and Henley J. M. (2009) Protein SUMOylation modulates calcium influx and glutamate release from presynaptic terminals. Eur. J. Neurosci. 29, 13481356.
  • Feligioni M., Brambilla E., Camassa A., Sclip A., Arnaboldi A., Morelli F., Antoniou X. and Borsello T. (2011) Crosstalk between JNK and SUMO signaling pathways: deSUMOylation is protective against H2O2-induced cell injury. PLoS ONE 6, e28185.
  • Foran E., Bogush A., Goffredo M., Roncaglia P., Gustincich S., Pasinelli P. and Trotti D. (2011) Motor neuron impairment mediated by a sumoylated fragment of the glial glutamate transporter EAAT2. Glia 59, 17191731.
  • Gareau J. R. and Lima C. D. (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat. Rev. Mol. Cell Biol. 11, 861871.
  • Geiss-Friedlander R. and Melchior F. (2007) Concepts in sumoylation: a decade on. Nat. Rev. Mol. Cell Biol. 8, 947956.
  • Gibb S. L., Boston-Howes W., Lavina Z. S., Gustincich S., Brown R. H., Jr, Pasinelli P. and Trotti D. (2007) A caspase-3-cleaved fragment of the glial glutamate transporter EAAT2 is sumoylated and targeted to promyelocytic leukemia nuclear bodies in mutant SOD1-linked amyotrophic lateral sclerosis. J. Biol. Chem. 282, 3248032490.
  • Giorgino F., de Robertis O., Laviola L., Montrone C., Perrini S., McCowen K. C. and Smith R. J. (2000) The sentrin-conjugating enzyme mUbc9 interacts with GLUT4 and GLUT1 glucose transporters and regulates transporter levels in skeletal muscle cells. Proc. Natl Acad. Sci. USA 97, 11251130.
  • Girdwood D., Bumpass D., Vaughan O. A., Thain A., Anderson L. A., Snowden A. W., Garcia-Wilson E., Perkins N. D. and Hay R. T. (2003) P300 transcriptional repression is mediated by SUMO modification. Mol. Cell 11, 10431054.
  • Gowran A., Murphy C. E. and Campbell V. A. (2009) Δ9-tetrahydrocannabinol regulates the p53 post-translational modifiers Murine double minute 2 and the Small Ubiquitin MOdifier protein in the rat brain. FEBS Lett. 583, 34123418.
  • Guo C., Hildick K. L., Luo J., Dearden L., Wilkinson K. A. and Henley J. M. (2013) SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia. EMBO J. 32, 15141528.
  • van Hagen M., Overmeer R. M., Abolvardi S. S. and Vertegaal A. C. (2010) RNF4 and VHL regulate the proteasomal degradation of SUMO-conjugated Hypoxia-Inducible Factor-2alpha. Nucleic Acids Res. 38, 19221931.
  • Harder Z., Zunino R. and McBride H. (2004) Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr. Biol. 14, 340345.
  • Hay R. T. (2005) SUMO: a history of modification. Mol. Cell 18, 112.
  • Heun P. (2007) SUMOrganization of the nucleus. Curr. Opin. Cell Biol. 19, 350355.
  • Hietakangas V., Ahlskog J. K., Jakobsson A. M. et al. (2003) Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Mol. Cell. Biol. 23, 29532968.
  • Hietakangas V., Anckar J., Blomster H. A., Fujimoto M., Palvimo J. J., Nakai A. and Sistonen L. (2006) PDSM, a motif for phosphorylation-dependent SUMO modification. Proc. Natl Acad. Sci. USA 103, 4550.
  • Hilgarth R. S., Hong Y., Park-Sarge O. K. and Sarge K. D. (2003) Insights into the regulation of heat shock transcription factor 1 SUMO-1 modification. Biochem. Biophys. Res. Commun. 303, 196200.
  • Hong Y., Rogers R., Matunis M. J., Mayhew C. N., Goodson M. L., Park-Sarge O. K. and Sarge K. D. (2001) Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. J. Biol. Chem. 276, 4026340267.
  • Hoppe J. B., Rattray M., Tu H., Salbego C. G. and Cimarosti H. (2013) SUMO-1 conjugation blocks beta-amyloid-induced astrocyte reactivity. Neurosci. Lett. 546, 5156.
  • Huang C., Han Y., Wang Y. et al. (2009) SENP3 is responsible for HIF-1 transactivation under mild oxidative stress via p300 de-SUMOylation. EMBO J. 28, 27482762.
  • Huang H., Du G., Chen H., Liang X., Li C., Zhu N., Xue L., Ma J. and Jiao R. (2011) Drosophila Smt3 negatively regulates JNK signaling through sequestering Hipk in the nucleus. Development 138, 24772485.
  • Jaafari N., Konopacki F. A., Owen T. F., Kantamneni S., Rubin P., Craig T. J., Wilkinson K. A. and Henley J. M. (2013) SUMOylation is required for glycine-induced increases in AMPA receptor surface expression (ChemLTP) in hippocampal neurons. PLoS ONE 8, e52345.
  • Kim H. J., Yun J., Lee J., Hong H., Jeong J., Kim E., Bae Y. S. and Lee K. J. (2011) SUMO1 attenuates stress-induced ROS generation by inhibiting NADPH oxidase 2. Biochem. Biophys. Res. Commun. 410, 555562.
  • Konopacki F. A., Jaafari N., Rocca D. L., Wilkinson K. A., Chamberlain S., Rubin P., Kantamneni S., Mellor J. R. and Henley J. M. (2011) Agonist-induced PKC phosphorylation regulates GluK2 SUMOylation and kainate receptor endocytosis. Proc. Natl Acad. Sci. USA 108, 1977219777.
  • Kuo H. Y., Chang C. C., Jeng J. C., Hu H. M., Lin D. Y., Maul G. G., Kwok R. P. and Shih H. M. (2005) SUMO modification negatively modulates the transcriptional activity of CREB-binding protein via the recruitment of Daxx. Proc. Natl Acad. Sci. USA 102, 1697316978.
  • Lee Y. J., Miyake S., Wakita H., McMullen D. C., Azuma Y., Auh S. and Hallenbeck J. M. (2007) Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells. J. Cereb. Blood Flow Metab. 27, 950962.
  • Lee J. H., Park S. M., Kim O. S., Lee C. S., Woo J. H., Park S. J., Joe E. H. and Jou I. (2009a) Differential SUMOylation of LXRalpha and LXRbeta mediates transrepression of STAT1 inflammatory signaling in IFN-gamma-stimulated brain astrocytes. Mol. Cell 35, 806817.
  • Lee Y. J., Castri P., Bembry J., Maric D., Auh S. and Hallenbeck J. M. (2009b) SUMOylation participates in induction of ischemic tolerance. J. Neurochem. 109, 257267.
  • Lee Y. J., Mou Y., Maric D., Klimanis D., Auh S. and Hallenbeck J. M. (2011) Elevated global SUMOylation in Ubc9 transgenic mice protects their brains against focal cerebral ischemic damage. PLoS ONE 6, e25852.
  • Lee Y. J., Johnson K. R. and Hallenbeck J. M. (2012) Global protein conjugation by ubiquitin-like-modifiers during ischemic stress is regulated by microRNAs and confers robust tolerance to ischemia. PLoS ONE 7, e47787.
  • Leitao B. B., Jones M. C. and Brosens J. J. (2011) The SUMO E3-ligase PIAS1 couples reactive oxygen species-dependent JNK activation to oxidative cell death. FASEB J. 25, 34163425.
  • Li J., Lu Z., Li W. L., Yu S. P. and Wei L. (2008) Cell death and proliferation in NF-kappaB p50 knockout mouse after cerebral ischemia. Brain Res. 1230, 281289.
  • Liang M. H. and Chuang D. M. (2007) Regulation and function of glycogen synthase kinase-3 isoforms in neuronal survival. J. Biol. Chem. 282, 39043917.
  • Liu L. B., Omata W., Kojima I. and Shibata H. (2007) The SUMO conjugating enzyme Ubc9 is a regulator of GLUT4 turnover and targeting to the insulin-responsive storage compartment in 3T3-L1 adipocytes. Diabetes 56, 19771985.
  • Liu W., Tian F., Kurata T., Morimoto N. and Abe K. (2012) Dynamic changes of mitochondrial fusion and fission proteins after transient cerebral ischemia in mice. J. Neurosci. Res. 90, 11831189.
  • Martin S., Nishimune A., Mellor J. R. and Henley J. M. (2007) SUMOylation regulates kainate-receptor-mediated synaptic transmission. Nature 447, 321325.
  • Nacerddine K., Lehembre F., Bhaumik M., Artus J., Cohen-Tannoudji M., Babinet C., Pandolfi P. P. and Dejean A. (2005) The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev. Cell 9, 769779.
  • Nakka V. P., Lang B. T., Lenschow D. J., Zhang D. E., Dempsey R. J. and Vemuganti R. (2011) Increased cerebral protein ISGylation after focal ischemia is neuroprotective. J. Cereb. Blood Flow Metab. 31, 23752384.
  • Nunez-O'Mara A. and Berra E. (2013) Deciphering the emerging role of SUMO conjugation in the hypoxia-signaling cascade. Biol. Chem. 394, 459469.
  • Nurmi A., Lindsberg P. J., Koistinaho M. et al. (2004) Nuclear factor-kappaB contributes to infarction after permanent focal ischemia. Stroke 35, 987991.
  • Odagiri S., Tanji K., Mori F., Kakita A., Takahashi H., Kamitani T. and Wakabayashi K. (2012) Immunohistochemical analysis of Marinesco bodies, using antibodies against proteins implicated in the ubiquitin-proteasome system, autophagy and aggresome formation. Neuropathology 32, 261266.
  • Pal S., Hartnett K. A., Nerbonne J. M., Levitan E. S. and Aizenman E. (2003) Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. J. Neurosci. 23, 47984802.
  • Pamenter M. E., Perkins G. A., McGinness A. K., Gu X. Q., Ellisman M. H. and Haddad G. G. (2012) Autophagy and apoptosis are differentially induced in neurons and astrocytes treated with an in vitro mimic of the ischemic penumbra. PLoS ONE 7, e51469.
  • Pei D. S., Wang X. T., Liu Y. et al. (2006) Neuroprotection against ischaemic brain injury by a GluR6-9c peptide containing the TAT protein transduction sequence. Brain 129, 465479.
  • Phukan S., Babu V. S., Kannoji A., Hariharan R. and Balaji V. N. (2010) GSK3beta: role in therapeutic landscape and development of modulators. Br. J. Pharmacol. 160, 119.
  • Picard N., Caron V., Bilodeau S., Sanchez M., Mascle X., Aubry M. and Tremblay A. (2012) Identification of estrogen receptor beta as a SUMO-1 target reveals a novel phosphorylated sumoylation motif and regulation by glycogen synthase kinase 3beta. Mol. Cell. Biol. 32, 27092721.
  • Plant L. D., Dementieva I. S., Kollewe A., Olikara S., Marks J. D. and Goldstein S. A. (2010) One SUMO is sufficient to silence the dimeric potassium channel K2P1. Proc. Natl Acad. Sci. USA 107, 1074310748.
  • Plant L. D., Dowdell E. J., Dementieva I. S., Marks J. D. and Goldstein S. A. (2011) SUMO modification of cell surface Kv2.1 potassium channels regulates the activity of rat hippocampal neurons. J. Gen. Physiol. 137, 441454.
  • Plant L. D., Zuniga L., Araki D., Marks J. D. and Goldstein S. A. (2012) SUMOylation silences heterodimeric TASK potassium channels containing K2P1 subunits in cerebellar granule neurons. Sci. Signal.. 5, ra84.
  • Rajan S., Plant L. D., Rabin M. L., Butler M. H. and Goldstein S. A. (2005) Sumoylation silences the plasma membrane leak K+ channel K2P1. Cell 121, 3747.
  • Rami A. and Kogel D. (2008) Apoptosis meets autophagy-like cell death in the ischemic penumbra: Two sides of the same coin? Autophagy 4, 422426.
  • Schneider A., Martin-Villalba A., Weih F., Vogel J., Wirth T. and Schwaninger M. (1999) NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nat. Med. 5, 554559.
  • Seeler J. S. and Dejean A. (2003) Nuclear and unclear functions of SUMO. Nat. Rev. Mol. Cell Biol. 4, 690699.
  • Shao R., Zhang F. P., Tian F., Anders Friberg P., Wang X., Sjoland H. and Billig H. (2004) Increase of SUMO-1 expression in response to hypoxia: direct interaction with HIF-1alpha in adult mouse brain and heart in vivo. FEBS Lett. 569, 293300.
  • Shin J. A., Yang S. J., Jeong S. I., Park H. J., Choi Y. H. and Park E. M. (2013) Activation of estrogen receptor beta reduces blood-brain barrier breakdown following ischemic injury. Neuroscience 235, 165173.
  • Stapels M., Piper C., Yang T. et al. (2010) Polycomb group proteins as epigenetic mediators of neuroprotection in ischemic tolerance. Sci. Signal. 3, ra15.
  • Tojo M., Matsuzaki K., Minami T., Honda Y., Yasuda H., Chiba T., Saya H., Fujii-Kuriyama Y. and Nakao M. (2002) The aryl hydrocarbon receptor nuclear transporter is modulated by the SUMO-1 conjugation system. J. Biol. Chem. 277, 4657646585.
  • Um J. W. and Chung K. C. (2006) Functional modulation of parkin through physical interaction with SUMO-1. J. Neurosci. Res. 84, 15431554.
  • Um J. W., Min D. S., Rhim H., Kim J., Paik S. R. and Chung K. C. (2006) Parkin ubiquitinates and promotes the degradation of RanBP2. J. Biol. Chem. 281, 35953603.
  • de la Vega L., Grishina I., Moreno R., Kruger M., Braun T. and Schmitz M. L. (2012) A redox-regulated SUMO/acetylation switch of HIPK2 controls the survival threshold to oxidative stress. Mol. Cell 46, 472483.
  • Wang Z., Wang R., Sheng H., Sheng S. P., Paschen W. and Yang W. (2012) Transient ischemia induces massive nuclear accumulation of SUMO2/3-conjugated proteins in spinal cord neurons. Spinal Cord 51, 139143.
  • Wen Y. D., Sheng R., Zhang L. S., Han R., Zhang X., Zhang X. D., Han F., Fukunaga K. and Qin Z. H. (2008) Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 4, 762769.
  • Wilkinson K. A., Nakamura Y. and Henley J. M. (2010) Targets and consequences of protein SUMOylation in neurons. Brain Res. Rev. 64, 195212.
  • Xu Y., Zuo Y., Zhang H., Kang X., Yue F., Yi Z., Liu M., Yeh E. T., Chen G. and Cheng J. (2010) Induction of SENP1 in endothelial cells contributes to hypoxia-driven VEGF expression and angiogenesis. J. Biol. Chem. 285, 3668236688.
  • Yang W., Sheng H., Homi H. M., Warner D. S. and Paschen W. (2008a) Cerebral ischemia/stroke and small ubiquitin-like modifier (SUMO) conjugation–a new target for therapeutic intervention? J. Neurochem. 106, 989999.
  • Yang W., Sheng H., Warner D. S. and Paschen W. (2008b) Transient focal cerebral ischemia induces a dramatic activation of small ubiquitin-like modifier conjugation. J. Cereb. Blood Flow Metab. 28, 892896.
  • Yang W., Sheng H., Warner D. S. and Paschen W. (2008c) Transient global cerebral ischemia induces a massive increase in protein sumoylation. J. Cereb. Blood Flow Metab. 28, 269279.
  • Yang W., Ma Q., Mackensen G. B. and Paschen W. (2009) Deep hypothermia markedly activates the small ubiquitin-like modifier conjugation pathway; implications for the fate of cells exposed to transient deep hypothermic cardiopulmonary bypass. J. Cereb. Blood Flow Metab. 29, 886890.
  • Yang W., Thompson J. W., Wang Z., Wang L., Sheng H., Foster M. W., Moseley M. A. and Paschen W. (2012) Analysis of oxygen/glucose-deprivation-induced changes in SUMO3 conjugation using SILAC-based quantitative proteomics. J. Proteome Res. 11, 11081117.
  • Yin C., Xi L., Wang X., Eapen M. and Kukreja R. C. (2005) Silencing heat shock factor 1 by small interfering RNA abrogates heat shock-induced cardioprotection against ischemia-reperfusion injury in mice. J. Mol. Cell. Cardiol. 39, 681689.
  • Yonekura I., Takai K., Asai A., Kawahara N. and Kirino T. (2006) p53 potentiates hippocampal neuronal death caused by global ischemia. J. Cereb. Blood Flow Metab. 26, 13321340.
  • Zhang F. P., Mikkonen L., Toppari J., Palvimo J. J., Thesleff I. and Janne O. A. (2008) Sumo-1 function is dispensable in normal mouse development. Mol. Cell. Biol. 28, 53815390.
  • Zhou X., Zhou J., Li X., Guo C., Fang T. and Chen Z. (2011) GSK-3beta inhibitors suppressed neuroinflammation in rat cortex by activating autophagy in ischemic brain injury. Biochem. Biophys. Res. Commun. 411, 271275.
  • Zhu Q. J., Xu Y., Du C. P. and Hou X. Y. (2012) SUMOylation of the kainate receptor subunit GluK2 contributes to the activation of the MLK3-JNK3 pathway following kainate stimulation. FEBS Lett. 586, 12591264.
  • Zou Y., Zhu W., Sakamoto M. et al. (2003) Heat shock transcription factor 1 protects cardiomyocytes from ischemia/reperfusion injury. Circulation 108, 30243030.
  • Zungu M., Schisler J. and Willis M. S. (2011) All the little pieces. -Regulation of mitochondrial fusion and fission by ubiquitin and small ubiquitin-like modifer and their potential relevance in the heart. Circ. J. 75, 25132521.
  • Zunino R., Schauss A., Rippstein P., Andrade-Navarro M. and McBride H. M. (2007) The SUMO protease SENP5 is required to maintain mitochondrial morphology and function. J. Cell Sci. 120, 11781188.