SEARCH

SEARCH BY CITATION

References

  • A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell 72, 971983.
  • Alberati-Giani D., Ricciardi-Castagnoli P., Köhler C. and Cesura A. M. (1996) Regulation of the Kynurenine metabolic pathway by interferon-gamma in murine cloned macrophages and microglial cells. J. Neurochem. 66, 9961004.
  • Ball H. J., Sanchez-Perez A., Weiser S., Austin C. J. D., Astelbauer F., Miu J., McQuillan J. A., Stocker R., Jermiin L. S. and Hunt N. H. (2007) Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene 396, 203213.
  • Beal M. F., Kowall N. W., Ellison D. W., Mazurek M. F., Swartz K. J. and Martin J. B. (1986) Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature 321, 168171.
  • Beal M. F., Matson W. R., Swartz K. J., Gamache P. H. and Bird E. D. (1990) Kynurenine pathway measurements in Huntington's disease striatum: evidence for reduced formation of Kynurenic acid. J. Neurochem. 55, 13271339.
  • Becanovic K., Pouladi M. A., Lim R. S., Kuhn A., Pavlidis P., Luthi-Carter R., Hayden M. R. and Leavitt B. R. (2010) Transcriptional changes in Huntington disease identified using genome-wide expression profiling and cross-platform analysis. Hum. Mol. Genet. 19, 14381452.
  • Björkqvist M., Wild E. J., Thiele J. et al. (2008) A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease. J. Exp. Med. 205, 18691877.
  • Bonda D. J., Mailankot M., Stone J. G. et al. (2010) Indoleamine 2,3-dioxygenase and 3-hydroxyKynurenine modifications are found in the neuropathology of Alzheimer's disease. Redox Rep. 15, 161168.
  • Campesan S., Green E. W., Breda C., Sathyasaikumar K. V., Muchowski P. J., Schwarcz R., Kyriacou C. P. and Giorgini F. (2011) The Kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington's disease. Curr. Biol. 21, 961966.
  • Chen Y. and Guillemin G. J. (2009) Kynurenine pathway metabolites in humans: disease and healthy States. Int. J. Tryptophan Res. 2, 119.
  • Connor T. J., Starr N., O'Sullivan J. B. and Harkin A. (2008) Induction of indolamine 2,3-dioxygenase and Kynurenine 3-monooxygenase in rat brain following a systemic inflammatory challenge: a role for IFN-gamma? Neurosci. Lett. 441, 2934.
  • Eastman C. L. and Guilarte T. R. (1989) Cytotoxicity of 3-hydroxyKynurenine in a neuronal hybrid cell line. Brain Res. 495, 225231.
  • Franciosi S., Ryu J. K., Shim Y., Hill A., Connolly C., Hayden M. R., McLarnon J. G. and Leavitt B. R. (2012) Age-dependent neurovascular abnormalities and altered microglial morphology in the YAC128 mouse model of Huntington disease. Neurobiol. Dis. 45, 438449.
  • Gál E. M. and Sherman A. D. (1980) L-Kynurenine: its synthesis and possible regulatory function in brain. Neurochem. Res. 5, 223239.
  • van der Goot A. T., Zhu W., Vázquez-Manrique R. P. et al. (2012) Delaying aging and the aging-associated decline in protein homeostasis by inhibition of tryptophan degradation. Proc. Natl Acad. Sci. USA 109, 1491214917.
  • Graham R. K., Pouladi M. A., Joshi P. et al. (2009) Differential susceptibility to excitotoxic stress in YAC128 mouse models of Huntington disease between initiation and progression of disease. J. Neurosci. 29, 21932204.
  • Green E. W., Campesan S., Breda C., Sathyasaikumar K. V., Muchowski P. J., Schwarcz R., Kyriacou C. P. and Giorgini F. (2012) Drosophila eye color mutants as therapeutic tools for Huntington disease. Fly (Austin) 6, 117120.
  • Guidetti P., Reddy P. H., Tagle D. A. and Schwarcz R. (2000) Early Kynurenergic impairment in Huntington's disease and in a transgenic animal model. Neurosci. Lett. 283, 233235.
  • Guidetti P., Luthi-Carter R. E., Augood S. J. and Schwarcz R. (2004) Neostriatal and cortical quinolinate levels are increased in early grade Huntington's disease. Neurobiol. Dis. 17, 455461.
  • Guidetti P., Bates G. P., Graham R. K., Hayden M. R., Leavitt B. R., MacDonald M. E., Slow E. J., Wheeler V. C., Woodman B. and Schwarcz R. (2006) Elevated brain 3-hydroxyKynurenine and quinolinate levels in Huntington disease mice. Neurobiol. Dis. 23, 190197.
  • Guillemin G. J., Smith D. G., Smythe G. A., Armati P. J. and Brew B. J. (2003) Expression of the Kynurenine pathway enzymes in human microglia and macrophages. Adv. Exp. Med. Biol. 527, 105112.
  • Guillemin G. J., Brew B. J., Noonan C. E., Takikawa O. and Cullen K. M. (2005a) Indoleamine 2,3 dioxygenase and quinolinic acid immunoreactivity in Alzheimer's disease hippocampus. Neuropathol. Appl. Neurobiol. 31, 395404.
  • Guillemin G. J., Smythe G., Takikawa O. and Brew B. J. (2005b) Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia 49, 1523.
  • Guillemin G. J., Cullen K. M., Lim C. K., Smythe G. A., Garner B., Kapoor V., Takikawa O. and Brew B. J. (2007) Characterization of the Kynurenine Pathway in Human Neurons. J. Neurosci. 27, 1288412892.
  • Harper B. (2005) Huntington disease. J. R. Soc. Med. 98, 550.
  • Hedreen J. C. and Folstein S. E. (1995) Early loss of neostriatal striosome neurons in Huntington's disease. J. Neuropathol. Exp. Neurol. 54, 105120.
  • Heyes M. P., Saito K., Crowley J. S., Davis L. E., Demitrack M. A., Der M., Dilling L. A., Elia J., Kruesi M. J. and Lackner A. (1992) Quinolinic acid and Kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain 115, 12491273.
  • Higuchi K. and Hayaishi O. (1967) Enzymic formation of D-Kynurenine from D-tryptophan. Arch. Biochem. Biophys. 120, 397403.
  • Kanai M., Funakoshi H., Takahashi H., Hayakawa T., Mizuno S., Matsumoto K. and Nakamura T. (2009) Tryptophan 2,3-dioxygenase is a key modulator of physiological neurogenesis and anxiety-related behavior in mice. Mol. Brain 2, 8.
  • Kim H., Chen L., Lim G., Sung B., Wang S., McCabe M. F., Rusanescu G., Yang L., Tian Y. and Mao J. (2012) Brain indoleamine 2,3-dioxygenase contributes to the comorbidity of pain and depression. J. Clin. Invest. 122, 29402954.
  • Kohl C. and Sperner-Unterweger B. (2007) IDO and clinical conditions associated with depressive symptoms. Curr. Drug Metab. 8, 283287.
  • Levine M. S., Cepeda C., Hickey M. A., Fleming S. M. and Chesselet M.-F. (2004) Genetic mouse models of Huntington's and Parkinson's diseases: illuminating but imperfect. Trends Neurosci. 27, 691697.
  • Lugo-Huitrón R., Blanco-Ayala T., Ugalde-Muñiz P. et al. (2011) On the antioxidant properties of Kynurenic acid: free radical scavenging activity and inhibition of oxidative stress. Neurotoxicol. Teratol. 33, 538547.
  • Macdonald V. and Halliday G. (2002) Pyramidal cell loss in motor cortices in Huntington's disease. Neurobiol. Dis. 10, 378386.
  • Marchi M., Risso F., Viola C., Cavazzani P. and Raiteri M. (2002) Direct evidence that release-stimulating alpha7* nicotinic cholinergic receptors are localized on human and rat brain glutamatergic axon terminals. J. Neurochem. 80, 10711078.
  • Mazarei G., Neal S. J., Becanovic K., Luthi-Carter R., Simpson E. M. and Leavitt B. R. (2010) Expression analysis of novel striatal-enriched genes in Huntington disease. Hum. Mol. Genet. 19, 609622.
  • Munn D. H. and Mellor A. L. (2007) Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J. Clin. Investig. 117, 11471154.
  • Nakagami Y., Saito H. and Katsuki H. (1996) 3-HydroxyKynurenine toxicity on the rat striatum in vivo. Jpn. J. Pharmacol. 71, 183186.
  • O'Connor J. C., André C., Wang Y., Lawson M. A., Szegedi S. S., Lestage J., Castanon N., Kelley K. W. and Dantzer R. (2009a) Interferon-gamma and tumor necrosis factor-alpha mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus Calmette-Guerin. J. Neurosci. 29, 42004209.
  • O'Connor J. C., Lawson M. A., André C., Briley E. M., Szegedi S. S., Lestage J., Castanon N., Herkenham M., Dantzer R. and Kelley K. W. (2009b) Induction of IDO by bacille Calmette-Guérin is responsible for development of murine depressive-like behavior. J. Immunol. 182, 32023212.
  • Ohira K., Hagihara H., Toyama K., Takao K., Kanai M., Funakoshi H., Nakamura T. and Miyakawa T. (2010) Expression of tryptophan 2,3-dioxygenase in mature granule cells of the adult mouse dentate gyrus. Mol. Brain 3, 26.
  • Okamoto T., Toné S., Kanouchi H., Miyawaki C., Ono S. and Minatogawa Y. (2007) Transcriptional regulation of indoleamine 2,3-dioxygenase (IDO) by tryptophan and its analogue: Down-regulation of the indoleamine 2,3-dioxygenase (IDO) transcription by tryptophan and its analogue. Cytotechnology 54, 107113.
  • Okuda S., Nishiyama N., Saito H. and Katsuki H. (1998) 3-HydroxyKynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J. Neurochem. 70, 299307.
  • Pfefferkorn E. R., Rebhun S. and Eckel M. (1986) Characterization of an indoleamine 2,3-dioxygenase induced by gamma-interferon in cultured human fibroblasts. J. Interferon Res. 6, 267279.
  • Pouladi M. A., Graham R. K., Karasinska J. M., Xie Y., Santos R. D., Petersén A. and Hayden M. R. (2009) Prevention of depressive behaviour in the YAC128 mouse model of Huntington disease by mutation at residue 586 of huntingtin. Brain 132, 919932.
  • Ravishankar B., Liu H., Shinde R., Chandler P., Baban B., Tanaka M., Munn D. H., Mellor A. L., Karlsson M. C. I. and McGaha T. L. (2012) Tolerance to apoptotic cells is regulated by indoleamine 2,3-dioxygenase. Proc. Natl Acad. Sci. USA 109, 39093914.
  • Reynolds G. P. and Pearson S. J. (1989) Increased brain 3-hydroxyKynurenine in Huntington's disease. Lancet 2, 979980.
  • Rosas H. D., Koroshetz W. J., Chen Y. I. et al. (2003) Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 60, 16151620.
  • Rosenblatt A., Abbott M. H., Gourley L. M., Troncoso J. C., Margolis R. L., Brandt J. and Ross C. A. (2003) Predictors of neuropathological severity in 100 patients with Huntington's disease. Ann. Neurol. 54, 488493.
  • Sathyasaikumar K. V., Stachowski E. K., Amori L., Guidetti P., Muchowski P. J. and Schwarcz R. (2010) Dysfunctional Kynurenine pathway metabolism in the R6/2 mouse model of Huntington's disease. J. Neurochem. 113, 14161425.
  • Schwarcz R., Whetsell W. O. and Mangano R. M. (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219, 316318.
  • Schwarcz R., Okuno E., White R. J., Bird E. D. and Whetsell W. O. (1988) 3-Hydroxyanthranilate oxygenase activity is increased in the brains of Huntington disease victims. Proc. Natl Acad. Sci. USA 85, 40794081.
  • Singhrao S. K., Neal J. W., Morgan B. P. and Gasque P. (1999) Increased complement biosynthesis by microglia and complement activation on neurons in Huntington's disease. Exp. Neurol. 159, 362376.
  • Slow E. J., van Raamsdonk J., Rogers D. et al. (2003) Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum. Mol. Genet. 12, 15551567.
  • Stoy N., Mackay G. M., Forrest C. M., Christofides J., Egerton M., Stone T. W. and Darlington L. G. (2005) Tryptophan metabolism and oxidative stress in patients with Huntington's disease. J. Neurochem. 93, 611623.
  • Swanson D. J., Tong Y. and Goldowitz D. (2005) Disruption of cerebellar granule cell development in the Pax6 mutant, Sey mouse. Brain Res. Dev. Brain Res. 160, 176193.
  • Szalardy L., Klivenyi P., Zadori D., Fulop F., Toldi J. and Vecsei L. (2012) Mitochondrial disturbances, tryptophan metabolites and neurodegeneration: medicinal chemistry aspects. Curr. Med. Chem. 19, 18991920.
  • Thomas S. R. and Stocker R. (1999) Redox reactions related to indoleamine 2,3-dioxygenase and tryptophan metabolism along the Kynurenine pathway. Redox Rep. 4, 199220.
  • Ting K. K., Brew B. J. and Guillemin G. J. (2009) Effect of quinolinic acid on human astrocytes morphology and functions: implications in Alzheimer's disease. J. Neuroinflammation 6, 36.
  • Van Raamsdonk J. M., Murphy Z., Slow E. J., Leavitt B. R. and Hayden M. R. (2005a) Selective degeneration and nuclear localization of mutant huntingtin in the YAC128 mouse model of Huntington disease. Hum. Mol. Genet. 14, 38233835.
  • Van Raamsdonk J. M., Pearson J., Slow E. J., Hossain S. M., Leavitt B. R. and Hayden M. R. (2005b) Cognitive dysfunction precedes neuropathology and motor abnormalities in the YAC128 mouse model of Huntington's disease. J. Neurosci. 25, 41694180.
  • Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A. and Speleman F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, RESEARCH0034.
  • Vécsei L., Szalárdy L., Fülöp F. and Toldi J. (2012) Kynurenines in the CNS: recent advances and new questions. Nat. Rev. Drug Discov. 12, 6482.
  • Werner-Felmayer G., Werner E. R., Fuchs D., Hausen A., Reibnegger G. and Wachter H. (1989) Characteristics of interferon induced tryptophan metabolism in human cells in vitro. Biochim. Biophys. Acta 1012, 140147.
  • Widner B., Leblhuber F. and Fuchs D. (2002) Increased neopterin production and tryptophan degradation in advanced Parkinson's disease. J. Neural Transm. 109, 181189.
  • Yamada A., Akimoto H., Kagawa S., Guillemin G. J. and Takikawa O. (2009) Proinflammatory cytokine interferon-gamma increases induction of indoleamine 2,3-dioxygenase in monocytic cells primed with amyloid beta peptide 1-42: implications for the pathogenesis of Alzheimer's disease. J. Neurochem. 110, 791800.
  • Yuasa H. J., Ball H. J., Ho Y. F., Austin C. J. D., Whittington C. M., Belov K., Maghzal G. J., Jermiin L. S. and Hunt N. H. (2009) Characterization and evolution of vertebrate indoleamine 2, 3-dioxygenases IDOs from monotremes and marsupials. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 153, 137144.
  • Zwilling D., Huang S.-Y., Sathyasaikumar K. V. et al. (2011) Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration. Cell 145, 863874.