SEARCH

SEARCH BY CITATION

References

  • Banik N. L., Hogan E. L., Jenkins M. G., McDonald J. K., McAlhaney W. W. and Sostek M. B. (1983) Purification of a calcium-activated neutral proteinase from bovine brain. Neurochem. Res. 8, 13891405.
  • Braak H. and Del Tredici K. (2009) Neuroanatomy and pathology of sporadic Parkinson's disease. Adv. Anat. Embryol. Cell Biol. 201, 1119.
  • Brochard V., Combadiere B., Prigent A. et al. (2009) Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J. Clin. Invest. 119, 182192.
  • Burguillos M. A., Hajji N., Englund E., Persson A., Cenci A. M., Machado A., Cano J., Joseph B. and Venero J. L. (2011) Apoptosis-inducing factor mediates dopaminergic cell death in response to LPS-induced inflammatory stimulus: evidence in Parkinson's disease patients. Neurobiol. Dis. 41, 177188.
  • Butler J. T., Samantaray S., Beeson C. C., Ray S. K. and Banik N. L. (2009) Involvement of calpain in the process of Jurkat T cell chemotaxis. J. Neurosci. Res. 87, 626635.
  • Chera B., Schaecher K. E., Rocchini A., Imam S. Z., Sribnick E. A., Ray S. K., Ali S. F. and Banik N. L. (2004) Immunofluorescent labeling of increased calpain expression and neuronal death in the spinal cord of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice. Brain Res. 1006, 150156.
  • Choi D. H., Kim E. M., Son H. J., Joh T. H., Kim Y. S., Kim D., Flint Beal M. and Hwang O. (2008) A novel intracellular role of matrix metalloproteinase-3 during apoptosis of dopaminergic cells. J. Neurochem. 106, 405415.
  • Crocker S. J., Smith P. D., Jackson-Lewis V. et al. (2003) Inhibition of calpains prevents neuronal and behavioral deficits in an MPTP mouse model of Parkinson's disease. J. Neurosci. 23, 40814091.
  • Czlonkowska A., Kohutnicka M., Kurkowska-Jastrzebska I. and Czlonkowski A. (1996) Microglial reaction in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson's disease mice model. Neurodegeneration 5, 137143.
  • Damier P., Hirsch E. C., Agid Y. and Graybiel A. M. (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. Brain 122 (Pt 8), 14371448.
  • Del Tredici K. and Braak H. (2012) Spinal cord lesions in sporadic Parkinson's disease. Acta Neuropathol. 124, 643664.
  • Denson M. A. and Wszolek Z. K. (1995) Familial parkinsonism: our experience and review. Parkinsonism Relat. Disord. 1, 3546.
  • Dubois M., Strazielle C., Julien J. P. and Lalonde R. (2005) Mice with the deleted neurofilament of low molecular weight (Nefl) gene: 2. Effects on motor functions and spatial orientation. J. Neurosci. Res. 80, 751758.
  • Filley C. M. (2005) Neurobehavioral aspects of cerebral white matter disorders. Psychiatr. Clin. North Am. 28, 685700.
  • Forno L. S., Sternberger L. A., Sternberger N. H., Strefling A. M., Swanson K. and Eng L. F. (1986) Reaction of Lewy bodies with antibodies to phosphorylated and non-phosphorylated neurofilaments. Neurosci. Lett. 64, 253258.
  • Galloway P. G., Grundke-Iqbal I., Iqbal K. and Perry G. (1988) Lewy bodies contain epitopes both shared and distinct from Alzheimer neurofibrillary tangles. J. Neuropathol. Exp. Neurol. 47, 654663.
  • Galvin J. E., Uryu K., Lee V. M. and Trojanowski J. Q. (1999) Axon pathology in Parkinson's disease and Lewy body dementia hippocampus contains alpha-, beta-, and gamma-synuclein. Proc. Natl Acad. Sci. USA 96, 1345013455.
  • Gotow T. (2000) Neurofilaments in health and disease. Med. Electron Microsc. 33, 173199.
  • Hawkes C. H., Del Tredici K. and Braak H. (2010) A timeline for Parkinson's disease. Parkinsonism Relat. Disord. 16, 7984.
  • Hill W. D., Arai M., Cohen J. A. and Trojanowski J. Q. (1993) Neurofilament mRNA is reduced in Parkinson's disease substantia nigra pars compacta neurons. J. Comp. Neurol. 329, 328336.
  • Imai Y. and Lu B. (2011) Mitochondrial dynamics and mitophagy in Parkinson's disease: disordered cellular power plant becomes a big deal in a major movement disorder. Curr. Opin. Neurobiol. 21, 935941.
  • Kim Y. S., Kim S. S., Cho J. J., Choi D. H., Hwang O., Shin D. H., Chun H. S., Beal M. F. and Joh T. H. (2005) Matrix metalloproteinase-3: a novel signaling proteinase from apoptotic neuronal cells that activates microglia. J. Neurosci. 25, 37013711.
  • Knaryan V. H., Samantaray S., Le Gal C., Ray S. K. and Banik N. L. (2011) Tracking extranigral degeneration in animal models of Parkinson's disease: quest for effective therapeutic strategies. J. Neurochem. 118, 326338.
  • Laurie C., Reynolds A., Coskun O., Bowman E., Gendelman H. E. and Mosley R. L. (2007) CD4+ T cells from copolymer-1 immunized mice protect dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. J. Neuroimmunol. 183, 6068.
  • Levesque S., Wilson B., Gregoria V., Thorpe L. B., Dallas S., Polikov V. S., Hong J. S. and Block M. L. (2010) Reactive microgliosis: extracellular micro-calpain and microglia-mediated dopaminergic neurotoxicity. Brain 133, 808821.
  • Lezi E. and Swerdlow R. H. (2012) Mitochondria in neurodegeneration. Adv. Exp. Med. Biol. 942, 269286.
  • Lo E. H., Wang X. and Cuzner M. L. (2002) Extracellular proteolysis in brain injury and inflammation: role for plasminogen activators and matrix metalloproteinases. J. Neurosci. Res. 69, 19.
  • Lorenzl S., Albers D. S., Narr S., Chirichigno J. and Beal M. F. (2002) Expression of MMP-2, MMP-9, and MMP-1 and their endogenous counterregulators TIMP-1 and TIMP-2 in postmortem brain tissue of Parkinson's disease. Exp. Neurol. 178, 1320.
  • Lorenzl S., Calingasan N., Yang L. et al. (2004) Matrix metalloproteinase-9 is elevated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. NeuroMol. Med. 5, 119132.
  • McGeer P. L., Itagaki S., Boyes B. E. and McGeer E. G. (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 38, 12851291.
  • Mouatt-Prigent A., Karlsson J. O., Yelnik J., Agid Y. and Hirsch E. C. (2000) Calpastatin immunoreactivity in the monkey and human brain of control subjects and patients with Parkinson's disease. J. Comp. Neurol. 419, 175192.
  • Najim al-Din A. S., Wriekat A., Mubaidin A., Dasouki M. and Hiari M. (1994) Pallido-pyramidal degeneration, supranuclear upgaze paresis and dementia: Kufor-Rakeb syndrome. Acta Neurol. Scand. 89, 347352.
  • Olanow C. W., Stocchi F. and Lang A. E. (2011) Parkinson's Disease: Non-Motor and Non-Dopaminergic Features. Wiley-Blackwell, Chichester, West Sussex, UK.
  • Perrot R. and Eyer J. (2009) Neuronal intermediate filaments and neurodegenerative disorders. Brain Res. Bull. 80, 282295.
  • Pollanen M. S., Bergeron C. and Weyer L. (1992) Detergent-insoluble cortical Lewy body fibrils share epitopes with neurofilament and tau. J. Neurochem. 58, 19531956.
  • Ray S. K. and Banik N. L. (2003) Calpain and its involvement in the pathophysiology of CNS injuries and diseases: therapeutic potential of calpain inhibitors for prevention of neurodegeneration. Curr. Drug Targets CNS Neurol. Disord. 2, 173189.
  • Reynolds A. D., Banerjee R., Liu J., Gendelman H. E. and Mosley R. L. (2007) Neuroprotective activities of CD4+ CD25+ regulatory T cells in an animal model of Parkinson's disease. J. Leukoc. Biol. 82, 10831094.
  • Rosell A. and Lo E. H. (2008) Multiphasic roles for matrix metalloproteinases after stroke. Curr. Opin. Pharmacol. 8, 8289.
  • Rosenberg G. A. (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol. 8, 205216.
  • Roy A., Ghosh A., Jana A., Liu X., Brahmachari S., Gendelman H. E. and Pahan K. (2012) Sodium phenylbutyrate controls neuroinflammatory and antioxidant activities and protects dopaminergic neurons in mouse models of Parkinson's disease. PLoS ONE 7, e38113.
  • Sage J. I., Kortis H. I. and Sommer W. (1990) Evidence for the role of spinal cord systems in Parkinson's disease-associated pain. Clin. Neuropharmacol. 13, 171174.
  • Samantaray S., Knaryan V. H., Guyton M. K., Matzelle D. D., Ray S. K. and Banik N. L. (2007) The parkinsonian neurotoxin rotenone activates calpain and caspase-3 leading to motoneuron degeneration in spinal cord of Lewis rats. Neuroscience 146, 741755.
  • Samantaray S., Knaryan V. H., Butler J. T., Ray S. K. and Banik N. L. (2008a) Spinal cord degeneration in C57BL/6N mice following induction of experimental parkinsonism with MPTP. J. Neurochem. 104, 13091320.
  • Samantaray S., Ray S. K. and Banik N. L. (2008b) Calpain as a potential therapeutic target in Parkinson's disease. CNS Neurol. Disord. Drug Targets 7, 305312.
  • Samantaray S., Knaryan V. H., Le Gal C., Ray S. K. and Banik N. L. (2011) Calpain inhibition protected spinal cord motoneurons against 1-methyl-4-phenylpyridinium ion and rotenone. Neuroscience 192, 263274.
  • Sandyk R. and Lacono R. P. (1987) Spinal dopamine mechanisms and primary sensory symptoms in Parkinson's disease. Int. J. Neurosci. 32, 927931.
  • Sanfilipo M. P., Benedict R. H., Weinstock-Guttman B. and Bakshi R. (2006) Gray and white matter brain atrophy and neuropsychological impairment in multiple sclerosis. Neurology 66, 685692.
  • Shea T. B., Chan W. K., Kushkuley J. and Lee S. (2009) Organizational dynamics, functions, and pathobiological dysfunctions of neurofilaments. Results Probl. Cell Differ. 48, 2945.
  • Shields D. C. and Banik N. L. (1998) Upregulation of calpain activity and expression in experimental allergic encephalomyelitis: a putative role for calpain in demyelination. Brain Res. 794, 6874.
  • Shields D. C., Schaecher K. E., Saido T. C. and Banik N. L. (1999) A putative mechanism of demyelination in multiple sclerosis by a proteolytic enzyme, calpain. Proc. Natl Acad. Sci. USA 96, 1148611491.
  • Siderowf A. and Lang A. E. (2012) Premotor Parkinson's disease: concepts and definitions. Mov. Disord. 27, 608616.
  • Smith J. A., Das A., Ray S. K. and Banik N. L. (2012) Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res. Bull. 87, 1020.
  • Sternberger L. A. and Sternberger N. H. (1983) Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc. Natl Acad. Sci. USA 80, 61266130.
  • Szaro B. G. and Strong M. J. (2010) Post-transcriptional control of neurofilaments: New roles in development, regeneration and neurodegenerative disease. Trends Neurosci. 33, 2737.
  • Teismann P., Tieu K., Choi D. K., Wu D. C., Naini A., Hunot S., Vila M., Jackson-Lewis V. and Przedborski S. (2003) Cyclooxygenase-2 is instrumental in Parkinson's disease neurodegeneration. Proc. Natl Acad. Sci. USA 100, 54735478.
  • Trojanowski J. Q., Ishihara T., Higuchi M., Yoshiyama Y., Hong M., Zhang B., Forman M. S., Zhukareva V. and Lee V. M. (2002) Amyotrophic lateral sclerosis/parkinsonism dementia complex: transgenic mice provide insights into mechanisms underlying a common tauopathy in an ethnic minority on Guam. Exp. Neurol. 176, 111.
  • Vijitruth R., Liu M., Choi D. Y., Nguyen X. V., Hunter R. L. and Bing G. (2006) Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson's disease. J. Neuroinflammation 3, 6.
  • Vivacqua G., Casini A., Vaccaro R., Salvi E. P., Pasquali L., Fornai F., Yu S. and D'Este L. (2011) Spinal cord and parkinsonism: neuromorphological evidences in humans and experimental studies. J. Chem. Neuroanat. 42, 327340.
  • Vivacqua G., Biagioni F., Yu S., Casini A., Bucci D., D'Este L. and Fornai F. (2012) Loss of spinal motor neurons and alteration of alpha-synuclein immunostaining in MPTP induced Parkinsonism in mice. J. Chem. Neuroanat. 44, 7685.
  • Wakabayashi K. and Takahashi H. (1997) The intermediolateral nucleus and Clarke's column in Parkinson's disease. Acta Neuropathol. 94, 287289.
  • Wang T., Zhang W., Pei Z., Block M., Wilson B., Reece J. M., Miller D. S. and Hong J. S. (2006) Reactive microgliosis participates in MPP+-induced dopaminergic neurodegeneration: role of 67 kDa laminin receptor. FASEB J. 20, 906915.
  • Weil-Fugazza J. and Godefroy F. (1993) Dorsal and ventral dopaminergic innervation of the spinal cord: functional implications. Brain Res. Bull. 30, 319324.
  • Wilkin G. P. and Knott C. (1999) Glia: a curtain raiser. Adv. Neurol. 80, 37.
  • Yasuda Y., Shinagawa R., Yamada M., Mori T., Tateishi N. and Fujita S. (2007) Long-lasting reactive changes observed in microglia in the striatal and substantia nigral of mice after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Brain Res. 1138, 196202.
  • Yoshikawa K., Nakata Y., Yamada K. and Nakagawa M. (2004) Early pathological changes in the parkinsonian brain demonstrated by diffusion tensor MRI. J. Neurol. Neurosurg. Psychiatry 75, 481484.
  • Zhu Q., Couillard-Despres S. and Julien J. P. (1997) Delayed maturation of regenerating myelinated axons in mice lacking neurofilaments. Exp. Neurol. 148, 299316.