SEARCH

SEARCH BY CITATION

References

  • Adams S. M., Aksenova M. V., Aksenov M. Y., Mactutus C. F. and Booze R. M. (2010) ER-beta mediates 17beta-estradiol attenuation of HIV-1 Tat-induced apoptotic signaling. Synapse 64, 829838.
  • Adams S. M., Aksenova M. V., Aksenov M. Y., Mactutus C. F. and Booze R. M. (2012) Soy isoflavones genistein and daidzein exert anti-apoptotic actions via a selective ER-mediated mechanism in neurons following HIV-1 Tat(1-86) exposure. PLoS ONE 7, e37540.
  • Adle-Biassette H., Chretien F., Wingertsmann L., Hery C., Ereau T., Scaravilli F., Tardieu M. and Gray F. (1999) Neuronal apoptosis does not correlate with dementia in HIV infection but is related to microglial activation and axonal damage. Neuropathol. Appl. Neurobiol. 25, 123133.
  • Aksenov M. Y., Aksenova M. V., Mactutus C. F. and Booze R. M. (2009) Attenuated neurotoxicity of the transactivation-defective HIV-1 Tat protein in hippocampal cell cultures. Exp. Neurol. 219, 586590.
  • Aksenova M. V., Aksenov M. Y., Adams S. M., Mactutus C. F. and Booze R. M. (2009) Neuronal survival and resistance to HIV-1 Tat toxicity in the primary culture of rat fetal neurons. Exp. Neurol. 215, 253263.
  • Allison D. W., Gelfand V. I., Spector I. and Craig A. M. (1998) Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J. Neurosci. 18, 24232436.
  • Ances B. M. and Ellis R. J. (2007) Dementia and neurocognitive disorders due to HIV-1 infection. Semin. Neurol. 27, 8692.
  • Antinori A., Arendt G., Becker J. T. et al. (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69, 17891799.
  • Bachani M., Sacktor N., McArthur J. C., Nath A. and Rumbaugh J. (2013) Detection of anti-tat antibodies in CSF of individuals with HIV-associated neurocognitive disorders. J. Neurovirol. 19, 8288.
  • Bertrand S. J., Aksenova M. V., Aksenov M. Y., Mactutus C. F. and Booze R. M. (2011) Endogenous amyloidogenesis in long-term rat hippocampal cell cultures. BMC Neurosci. 12, 38.
  • Bertrand S. J., Aksenova M. V., Mactutus C. F. and Booze R. M. (2013) HIV-1 Tat protein variants: critical role for the cysteine region in synaptodendritic injury. Exp. Neurol. 248, 228235.
  • Calabrese B., Wilson M. S. and Halpain S. (2006) Development and regulation of dendritic spine synapses. Physiology (Bethesda) 21, 3847.
  • Craig A. M., Blackstone C. D., Huganir R. L. and Banker G. (1994) Selective clustering of glutamate and gamma-aminobutyric acid receptors opposite terminals releasing the corresponding neurotransmitters. Proc. Natl Acad. Sci. USA 91, 1237312377.
  • Dent E. W., Merriam E. B. and Hu X. (2011) The dynamic cytoskeleton: backbone of dendritic spine plasticity. Curr. Opin. Neurobiol. 21, 175181.
  • Desplats P., Dumaop W., Smith D., Adame A., Everall I., Letrendre S., Ellis R., Cherner M., Grant I. and Masliah E. (2013) Molecular and pathologic insights from latent HIV-1 infection in the human brain. Neurology 80, 14151423.
  • Ellis R., Langford D. and Masliah E. (2007) HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat. Rev. Neurosci. 8, 3344.
  • Everall I. P., Heaton R. K., Marcotte T. D., Ellis R. J., McCutchan J. A., Atkinson J. H., Grant I., Mallory M. and Masliah E. (1999) Cortical synaptic density is reduced in mild to moderate human immunodeficiency virus neurocognitive disorder. HNRC Group. HIV Neurobehavioral Research Center. Brain Pathol. 9, 209217.
  • Fitting S., Xu R., Bull C., Buch S. K., El-Hage N., Nath A., Knapp P. E. and Hauser K. F. (2010) Interactive comorbidity between opioid drug abuse and HIV-1 Tat: chronic exposure augments spine loss and sublethal dendritic pathology in striatal neurons. Am. J. Pathol. 177, 13971410.
  • Glazier M. G. and Bowman M. A. (2001) A review of the evidence for the use of phytoestrogens as a replacement for traditional estrogen replacement therapy. Arch. Intern. Med. 161, 11611172.
  • Gould E., Woolley C. S., Frankfurt M. and McEwen B. S. (1990) Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. J. Neurosci. 10, 12861291.
  • Halpain S., Hipolito A. and Saffer L. (1998) Regulation of F-actin stability in dendritic spines by glutamate receptors and calcineurin. J. Neurosci. 18, 98359844.
  • Heaton R. K., Clifford D. B., Franklin D. R. Jr et al. (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology 75, 20872096.
  • Heller E. A., Zhang W., Selimi F., Earnheart J. C., Slimak M. A., Santos-Torres J., Ibanez-Tallon I., Aoki C., Chait B. T. and Heintz N. (2012) The biochemical anatomy of cortical inhibitory synapses. PLoS ONE 7, e39572.
  • Hotulainen P., Llano O., Smirnov S., Tanhuanpaa K., Faix J., Rivera C. and Lappalainen P. (2009) Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. J. Cell Biol. 185, 323339.
  • Johnson O. L. and Ouimet C. C. (2006) A regulatory role for actin in dendritic spine proliferation. Brain Res. 1113, 19.
  • Kaech S., Fischer M., Doll T. and Matus A. (1997) Isoform specificity in the relationship of actin to dendritic spines. J. Neurosci. 17, 95659572.
  • Kaul M., Garden G. A. and Lipton S. A. (2001) Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410, 988994.
  • Kim H. J., Martemyanov K. A. and Thayer S. A. (2008) Human immunodeficiency virus protein Tat induces synapse loss via a reversible process that is distinct from cell death. J. Neurosci. 28, 1260412613.
  • Korobova F. and Svitkina T. (2010) Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis. Mol. Biol. Cell 21, 165176.
  • Kramar E. A., Chen L. Y., Brandon N. J., Rex C. S., Liu F., Gall C. M. and Lynch G. (2009) Cytoskeletal changes underlie estrogen's acute effects on synaptic transmission and plasticity. J. Neurosci. 29, 1298212993.
  • Kupfer R., Swanson L., Chow S., Staub R. E., Zhang Y. L., Cohen I. and Christians U. (2008) Oxidative in vitro metabolism of liquiritigenin, a bioactive compound isolated from the Chinese herbal selective estrogen beta-receptor agonist MF101. Drug Metab. Dispos. 36, 22612269.
  • Lau P. M., Zucker R. S. and Bentley D. (1999) Induction of filopodia by direct local elevation of intracellular calcium ion concentration. J. Cell Biol. 145, 12651275.
  • Lephart E. D., Setchell K. D. and Lund T. D. (2005) Phytoestrogens: hormonal action and brain plasticity. Brain Res. Bull. 65, 193198.
  • Letendre S. (2011) Central nervous system complications in HIV disease: HIV-associated neurocognitive disorder. Top. Antivir. Med. 19, 137142.
  • Li W., Li G., Steiner J. and Nath A. (2009) Role of Tat protein in HIV neuropathogenesis. Neurotox. Res. 16, 205220.
  • Lin Z., Gu J., Xiu J., Mi T., Dong J. and Tiwari J. K. (2012) Traditional chinese medicine for senile dementia. Evid. Based Complement. Alternat. Med. 2012, 692621.
  • Lindl K. A., Marks D. R., Kolson D. L. and Jordan-Sciutto K. L. (2010) HIV-associated neurocognitive disorder: pathogenesis and therapeutic opportunities. J. Neuroimmune Pharmacol. 5, 294309.
  • Liu F., Day M., Muniz L. C. et al. (2008) Activation of estrogen receptor-beta regulates hippocampal synaptic plasticity and improves memory. Nat. Neurosci. 11, 334343.
  • Liu R. T., Zou L. B. and Lu Q. J. (2009) Liquiritigenin inhibits Abeta(25-35)-induced neurotoxicity and secretion of Abeta(1-40) in rat hippocampal neurons. Acta Pharmacol. Sin. 30, 899906.
  • Liu R. T., Zou L. B., Fu J. Y. and Lu Q. J. (2010) Effects of liquiritigenin treatment on the learning and memory deficits induced by amyloid beta-peptide (25-35) in rats. Behav. Brain Res. 210, 2431.
  • Liu R. T., Tang J. T., Zou L. B., Fu J. Y. and Lu Q. J. (2011) Liquiritigenin attenuates the learning and memory deficits in an amyloid protein precursor transgenic mouse model and the underlying mechanisms. Eur. J. Pharmacol. 669, 7683.
  • Mancuso J. J., Chen Y., Li X., Xue Z. and Wong S. T. (2012) Methods of dendritic spine detection: from Golgi to high-resolution optical imaging. Neuroscience. doi:10.1016/j.neuroscience.2012.04.010. [Epub ahead of print].
  • Maragos W. F., Tillman P., Jones M., Bruce-Keller A. J., Roth S., Bell J. E. and Nath A. (2003) Neuronal injury in hippocampus with human immunodeficiency virus transactivating protein, Tat. Neuroscience 117, 4353.
  • Masliah E., Heaton R. K., Marcotte T. D. et al. (1997) Dendritic injury is a pathological substrate for human immunodeficiency virus-related cognitive disorders. HNRC Group. The HIV Neurobehavioral Research Center. Ann. Neurol. 42, 963972.
  • Matus A., Ackermann M., Pehling G., Byers H. R. and Fujiwara K. (1982) High actin concentrations in brain dendritic spines and postsynaptic densities. Proc. Natl Acad. Sci. USA 79, 75907594.
  • Mersereau J. E., Levy N., Staub R. E. et al. (2008) Liquiritigenin is a plant-derived highly selective estrogen receptor beta agonist. Mol. Cell. Endocrinol. 283, 4957.
  • Mortensen A., Kulling S. E., Schwartz H. et al. (2009) Analytical and compositional aspects of isoflavones in food and their biological effects. Mol. Nutr. Food Res. 53(Suppl 2), S266S309.
  • Murphy D. D. and Segal M. (1996) Regulation of dendritic spine density in cultured rat hippocampal neurons by steroid hormones. J. Neurosci. 16, 40594068.
  • O'Neill K. O., Chen S. and Brinton R. D. (2004) Impact of the selective estrogen receptor modulator, tamoxifen, on neuronal outgrowth and survival following toxic insults associated with aging and Alzheimer's disease. Exp. Neurol. 188, 268278.
  • Paruthiyil S., Cvoro A., Zhao X. et al. (2009) Drug and cell type-specific regulation of genes with different classes of estrogen receptor beta-selective agonists. PLoS ONE 4, e6271.
  • Phan A., Lancaster K. E., Armstrong J. N., MacLusky N. J. and Choleris E. (2011) Rapid effects of estrogen receptor alpha and beta selective agonists on learning and dendritic spines in female mice. Endocrinology 152, 14921502.
  • Pugliese A., Vidotto V., Beltramo T., Petrini S. and Torre D. (2005) A review of HIV-1 Tat protein biological effects. Cell Biochem. Funct. 23, 223227.
  • Sa M. J., Madeira M. D., Ruela C., Volk B., Mota-Miranda A. and Paula-Barbosa M. M. (2004) Dendritic changes in the hippocampal formation of AIDS patients: a quantitative Golgi study. Acta Neuropathol. 107, 97110.
  • Sanchez A. M., Flamini M. I., Fu X. D., Mannella P., Giretti M. S., Goglia L., Genazzani A. R. and Simoncini T. (2009) Rapid signaling of estrogen to WAVE1 and moesin controls neuronal spine formation via the actin cytoskeleton. Mol. Endocrinol. 23, 11931202.
  • Segal M. and Murphy D. (2001) Estradiol induces formation of dendritic spines in hippocampal neurons: functional correlates. Horm. Behav. 40, 156159.
  • Sekino Y., Kojima N. and Shirao T. (2007) Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochem. Int. 51, 92104.
  • Shin A. H., Kim H. J. and Thayer S. A. (2012) Subtype selective NMDA receptor antagonists induce recovery of synapses lost following exposure to HIV-1 Tat. Br. J. Pharmacol. 166, 10021017.
  • Srivastava D. P., Woolfrey K. M., Liu F., Brandon N. J. and Penzes P. (2010) Estrogen receptor ss activity modulates synaptic signaling and structure. J. Neurosci. 30, 1345413460.
  • Woolley C. S. and McEwen B. S. (1992) Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J. Neurosci. 12, 25492554.
  • Wu Y. (2004) HIV-1 gene expression: lessons from provirus and non-integrated DNA. Retrovirology 1, 13. doi:10.1186/1742-4690-1-13.
  • Zhao L., Chen Q. and Diaz B. R. (2002) Neuroprotective and neurotrophic efficacy of phytoestrogens in cultured hippocampal neurons. Exp. Biol. Med. (Maywood) 227, 509519.
  • Zhao L., Mao Z. and Brinton R. D. (2009) A select combination of clinically relevant phytoestrogens enhances estrogen receptor beta-binding selectivity and neuroprotective activities in vitro and in vivo. Endocrinology 150, 770783.