SEARCH

SEARCH BY CITATION

References

  • Addis P., Shecterle L. M. and St Cyr J. A. (2012) Cellular protection during oxidative stress: a potential role for d-ribose and antioxidants. J. Diet. Suppl. 9, 178182.
  • Anderson W. W. and Collingridge G. L. (2001) The LTP Program: a data acquisition program for on-line analysis of long-term potentiation and other synaptic events. J. Neurosci. Methods 108, 7183.
  • Andres R. H., Ducray A. D., Schlattner U., Wallimann T. and Widmer H. R. (2008) Functions and effects of creatine in the central nervous system. Brain Res. Bull. 76, 329343.
  • Atkinson D. E. (1968) The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7, 40304034.
  • Balestrino M., Rebaudo R. and Lunardi G. (1999) Exogenous creatine delays anoxic depolarization and protects from hypoxic damage: dose-effect relationship. Brain Res. 816, 124130.
  • Balestrino M., Lensman M., Parodi M., Perasso L., Rebaudo R., Melani R., Polenov S. and Cupello A. (2002) Role of creatine and phosphocreatine in neuronal protection from anoxic and ischemic damage. Amino Acids 23, 221229.
  • Berger R., Middelanis J., Vaihinger H.-M., Mies G., Wilken B. and Jensen A. (2004) Creatine protects the immature brain from hypoxic-ischemic injury. J. Soc. Gynecol. Investig. 11, 915.
  • Caretti A., Bianciardi P., Sala G., Terruzzi C., Lucchina F. and Samaja M. (2010) Supplementation of creatine and ribose prevents apoptosis in ischemic cardiomyocytes. Cell. Physiol. Biochem. 26, 831838.
  • Carter A. J., Müller R. E., Pschorn U. and Stransky W. (1995) Preincubation with creatine enhances levels of creatine phosphate and prevents anoxic damage in rat hippocampal slices. J. Neurochem. 64, 26912699.
  • Dale N. and Frenguelli B. G. (2009) Release of adenosine and ATP during ischemia and epilepsy. Curr. Neuropharmacol. 7, 160179.
  • Edwards F. A., Konnerth A., Sakmann B. and Takahashi T. (1989) A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system. Pflugers Arch. 414, 600612.
  • Etherington L. A. and Frenguelli B. G. (2004) Endogenous adenosine modulates epileptiform activity in rat hippocampus in a receptor subtype-dependent manner. Eur. J. Neurosci. 19, 25392550.
  • Folbergrova J., Zhao Q., Katsura K. and Siesjo B. K. (1995) N-tert-butyl-alpha-phenylnitrone improves recovery of brain energy state in rats following transient focal ischemia. Proc. Natl Acad. Sci. USA 92, 50575061.
  • Frenguelli B. G. (1997) The effects of metabolic stress on glutamate receptor-mediated depolarizations in the in vitro rat hippocampal slice. Neuropharmacology 36, 981991.
  • Frenguelli B. G., Llaudet E. and Dale N. (2003) High-resolution real-time recording with microelectrode biosensors reveals novel aspects of adenosine release during hypoxia in rat hippocampal slices. J. Neurochem. 86, 15061515.
  • Frenguelli B. G., Wigmore G., Llaudet E. and Dale N. (2007) Temporal and mechanistic dissociation of ATP and adenosine release during ischaemia in the mammalian hippocampus. J. Neurochem. 101, 14001413.
  • Gerlach E., Marko P., Zimmer H. G., Pechan I. and Trendelenburg C. (1971) Different response of adenine nucleotide synthesis de novo in kidney and brain during aerobic recovery from anoxia and ischemia. Experientia 27, 876878.
  • Gualano B., Artioli G., Poortmans J. and Lancha Junior A. (2011) Exploring the therapeutic role of creatine supplementation. Amino Acids 38, 3144.
  • Gualano B., Roschel H., Lancha-Jr A. H., Brightbill C. E. and Rawson E. S. (2012) In sickness and in health: the widespread application of creatine supplementation. Amino Acids 43, 519529.
  • Hardie D. G. and Hawley S. A. (2001) AMP-activated protein kinase: the energy charge hypothesis revisited. BioEssays 23, 11121119.
  • Hillered L., Hallstrom A., Segersvard S., Persson L. and Ungerstedt U. (1989) Dynamics of extracellular metabolites in the striatum after middle cerebral artery occlusion in the rat monitored by intracerebral microdialysis. J. Cereb. Blood Flow Metab. 9, 607616.
  • Kanemitsu H., Tamura A., Kirino T., Karasawa S., Sano K., Iwamoto T., Yoshiura M. and Iriyama K. (1988) Xanthine and uric acid levels in rat brain following focal ischemia. J. Neurochem. 51, 18821885.
  • Kass I. S. and Lipton P. (1982) Mechanisms involved in irreversible anoxic damage to the in vitro rat hippocampal slice. J. Physiol. 332, 459472.
  • Kimura T., Sako K., Tanaka K., Kusakabe M., Tanaka T. and Nakada T. (2002) Effect of mild hypothermia on energy state recovery following transient forebrain ischemia in the gerbil. Exp. Brain Res. 145, 8390.
  • Kirino T. (2002) Ischemic Tolerance. J. Cereb. Blood Flow Metab. 22, 12831296.
  • Kleihues P., Kobayashi K. and Hossmann K. A. (1974) Purine nucleotide metabolism in the cat brain after one hour of complete ischemia. J. Neurochem. 23, 417425.
  • Kobayashi T., Yamada T. and Okada Y. (1998) The levels of adenosine and its metabolites in the guinea pig and rat brain during complete ischemia-in vivo study. Brain Res. 787, 211219.
  • Lamberts R. R., Caldenhoven E., Lansink M., Witte G., Vaessen R. J., St Cyr J. A. and Stienen G. J. M. (2007) Preservation of diastolic function in monocrotaline-induced right ventricular hypertrophy in rats. Am. J. Physiol. Heart Circ. Physiol. 293, H1869H1876.
  • Lipton P. (1999) Ischemic cell death in brain neurons. Physiol. Rev. 79, 14311568.
  • Lipton P. and Robacker K. (1982) Adenosine may cause an early inhibition of synaptic transmission during anoxia. Soci. Neurosci. Abst. 8, 283.10.
  • Lipton P. and Whittingham T. S. (1982) Reduced ATP concentration as a basis for synaptic transmission failure during hypoxia in the in vitro guinea-pig hippocampus. J. Physiol. 325, 5165.
  • MacCarter D., Vijay N., Washam M., Shecterle L., Sierminski H. and St Cyr J. A. (2009) d-ribose aids advanced ischemic heart failure patients. Int. J. Cardiol. 137, 7980.
  • Mascia L., Cappiello M., Cherri S. and Ipata P. L. (2000) In vitro recycling of alpha-d-ribose 1-phosphate for the salvage of purine bases. Biochim. Biophys. Acta 1474, 7074.
  • Mauser M., Hoffmeister H. M., Nienaber C. and Schaper W. (1985) Influence of ribose, adenosine, and “AICAR” on the rate of myocardial adenosine triphosphate synthesis during reperfusion after coronary artery occlusion in the dog. Circ. Res. 56, 220230.
  • Muller C., Zimmer H., Gross M., Gresser U., Brotsack I., Wehling M. and Pliml W. (1998) Effect of ribose on cardiac adenine nucleotides in a donor model for heart transplantation. Eur. J. Med. Res. 3, 554558.
  • zur Nedden S., Eason R., Doney A. S. and Frenguelli B. G. (2009) An ion-pair reversed-phase HPLC method for determination of fresh tissue adenine nucleotides avoiding freeze-thaw degradation of ATP. Anal. Biochem. 388, 108114.
  • zur Nedden S., Hawley S., Pentland N., Hardie D. G., Doney A. S. and Frenguelli B. G. (2011) Intracellular ATP influences synaptic plasticity in area CA1 of rat hippocampus via metabolism to adenosine and activity-dependent activation of adenosine A1 receptors. J. Neurosci. 31, 62216234.
  • zur Nedden S., Doney A. S. and Frenguelli B. G. (2012) The double edged sword: gaining adenosine at the expense of ATP. How to balance the books, in Adenosine:A Key Link Between Metabolism and Central Nervous System Activity (Masino S. A. and Boison D. eds.), pp. in press. Springer, New York.
  • Nishiyama J., Ueki M., Asaga T., Chujo K. and Maekawa N. (2009) Protective action of d-ribose against renal injury caused by ischemia and reperfusion in rats with transient hyperglycemia. Tohoku J. Exp. Med. 219, 215222.
  • Omran H., Illien S., MacCarter D., St Cyr J. and Luderitz B. (2003) d-ribose improves diastolic function and quality of life in congestive heart failure patients: a prospective feasibility study. Eur. J. Heart Fail. 5, 615619.
  • Omran H., McCarter D., St Cyr J. and Luderitz B. (2004) d-ribose aids congestive heart failure patients. Exp. Clin. Cardiol. 9, 117118.
  • Paschen W., Olah L. and Mies G. (2000) Effect of transient focal ischemia of mouse brain on energy state and NAD levels: no evidence that NAD depletion plays a major role in secondary disturbances of energy metabolism. J. Neurochem. 75, 16751680.
  • Pasque M. K. and Wechsler A. S. (1984) Metabolic intervention to affect myocardial recovery following ischemia. Ann. Surg. 200, 112.
  • Pauly D. F. and Pepine C. J. (2000) d-ribose as a supplement for cardiac energy metabolism. J. Cardiovasc. Pharmacol. Ther. 5, 249258.
  • Pearson T., Damian K., Lynas R. E. and Frenguelli B. G. (2006) Sustained elevation of extracellular adenosine and activation of A1 receptors underlie the post-ischaemic inhibition of neuronal function in rat hippocampus in vitro. J. Neurochem. 97, 13571368.
  • Pelligrino D. A., Vetri F. and Xu H. L. (2011) Purinergic mechanisms in gliovascular coupling. Semin. Cell Dev. Biol. 22, 229236.
  • Perasso L., Adriano E., Ruggeri P., Burov S. V., Gandolfo C. and Balestrino M. (2009) In vivo neuroprotection by a creatine-derived compound: Phosphocreatine-Mg-complex acetate. Brain Res. 1285, 158163.
  • Perasso L., Spallarossa P., Gandolfo C., Ruggeri P. and Balestrino M. (2013) Therapeutic use of creatine in brain or heart ischemia: available data and future perspectives. Med. Res. Rev. 33, 336363.
  • Perkowski D., Wagner S. and St Cyr J. A. (2007) d-ribose benefits “off” pump coronary artery bypass revascularization. J. Card. Surg. 22, 370371.
  • Phillis J. W. (1989) Adenosine in the control of the cerebral circulation. Cerebrovasc. Brain Metab. Rev. 1, 2654.
  • Phillis J. W., Perkins L. M., Smith-Barbour M. and O'Regan M. H. (1995) Oxypurinol-enhanced postischemic recovery of the rat brain involves preservation of adenine nucleotides. J. Neurochem. 64, 21772184.
  • Phillis J. W., O'Regan M. H., Estevez A. Y., Song D. and VanderHeide S. J. (1996) Cerebral energy metabolism during severe ischemia of varying duration and following reperfusion. J. Neurochem. 67, 15251531.
  • Pliml W., von Arnim T., Stablein A., Hofmann H., Zimmer H. G. and Erdmann E. (1992) Effects of ribose on exercise-induced ischaemia in stable coronary artery disease. Lancet 340, 507510.
  • Riganti C., Gazzano E., Polimeni M., Aldieri E. and Ghigo D. (2012) The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radical Biol. Med. 53, 421436.
  • Rudolphi K. A., Schubert P., Parkinson F. E. and Fredholm B. B. (1992) Neuroprotective role of adenosine in cerebral ischaemia. Trends Pharmacol. Sci. 13, 439445.
  • Sato H., Ueki M., Asaga T., Chujo K. and Maekawa N. (2009) d-ribose attenuates ischemia/reperfusion-induced renal injury by reducing neutrophil activation in rats. Tohoku J. Exp. Med. 218, 3540.
  • Schneider H. J., Rossner S., Pfeiffer D. and Hagendorff A. (2008) d-ribose improves cardiac contractility and hemodynamics, and reduces expression of c-fos in the hippocampus during sustained slow ventricular tachycardia in rats. Int. J. Cardiol. 125, 4956.
  • Shecterle L. M., Terry K. R. and St Cyr J. A. (2010) The patented uses of d-ribose in cardiovascular diseases. Recent Pat. Cardiovasc. Drug Discov. 5, 138142.
  • Smolenski R. T., Kalsi K. K., Zych M., Kochan Z. and Yacoub M. H. (1998) Adenine/ribose supply increases adenosine production and protects ATP pool in adenosine kinase-inhibited cardiac cells. J. Mol. Cell. Cardiol. 30, 673683.
  • Somjen G. G. (2001) Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol. Rev. 81, 10651096.
  • St Cyr J., Ward H., Kriett J., Alyono D., Einzig S., Bianco R., Anderson R. and Foker J. (1986) Long term model for evaluation of myocardial metabolic recovery following global ischemia. Adv. Exp. Med. Biol. 194, 401414.
  • Stone T. W., Ceruti S. and Abbracchio M. P. (2009) Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handb. Exp. Pharmacol. 193, 535587.
  • Stover J. F., Lowitzsch K. and Kempski O. S. (1997) Cerebrospinal fluid hypoxanthine, xanthine and uric acid levels may reflect glutamate-mediated excitotoxicity in different neurological diseases. Neurosci. Lett. 238, 2528.
  • Sullivan P. G., Geiger J. D., Mattson M. P. and Scheff S. W. (2000) Dietary supplement creatine protects against traumatic brain injury. Ann. Neurol. 48, 723729.
  • Thangnipon W., Kingsbury A., Webb M. and Balazs R. (1983) Observations on rat cerebellar cells in vitro: influence of substratum, potassium concentration and relationship between neurones and astrocytes. Brain Res. 313, 177189.
  • Tomaselli B., zur Nedden S., Podhraski V. and Baier-Bitterlich G. (2008) p42/44 MAPK is an essential effector for purine nucleoside-mediated neuroprotection of hypoxic PC12 cells and primary cerebellar granule neurons. Mol. Cell. Neurosci.. 38, 559568.
  • Torrecilla A., Marques A. F., Buscalioni R. D., Oliveira J. M., Teixeira N. A., Atencia E. A., Gunther Sillero M. A. and Sillero A. (2001) Metabolic fate of AMP, IMP, GMP and XMP in the cytosol of rat brain: an experimental and theoretical analysis. J. Neurochem. 76, 12911307.
  • Valtysson J., Persson L. and Hillered L. (1998) Extracellular ischaemia markers in repeated global ischaemia and secondary hypoxaemia monitored by microdialysis in rat brain. Acta Neurochir. (Wien) 140, 387395.
  • Wall M., Eason R. and Dale N. (2010) Biosensor measurement of purine release from cerebellar cultures and slices. Purinergic Signal. 6, 339348.
  • Weigand M. A., Michel A., Eckstein H. H., Martin E. and Bardenheuer H. J. (1999) Adenosine: a sensitive indicator of cerebral ischemia during carotid endarterectomy. Anesthesiology 91, 414421.
  • Zhu S., Li M., Figueroa B. E. et al. (2004) Prophylactic creatine administration mediates neuroprotection in cerebral ischemia in mice. J. Neurosci. 24, 59095912.
  • Zimmer H. G. (1982) Ribose enhances the isoproterenol-elicited positive inotropic effect in rats in vivo. J. Mol. Cell. Cardiol. 14, 479482.
  • Zimmer H. G. (1992) The oxidative pentose phosphate pathway in the heart: regulation, physiological significance, and clinical implications. Basic Res. Cardiol. 87, 303316.
  • Zimmer H. G. (1996) Regulation of and intervention into the oxidative pentose phosphate pathway and adenine nucleotide metabolism in the heart. Mol. Cell. Biochem. 160–161, 101109.
  • Zimmer H. G. (1998) Significance of the 5-phosphoribosyl-1-pyrophosphate pool for cardiac purine and pyrimidine nucleotide synthesis: studies with ribose, adenine, inosine, and orotic acid in rats. Cardiovasc. Drugs Ther. 12(Suppl 2), 179187.
  • Zimmer H. G., Martius P. A. and Marschner G. (1989) Myocardial infarction in rats: effects of metabolic and pharmacologic interventions. Basic Res. Cardiol. 84, 332343.
  • Zoref-Shani E., Bromberg Y., Lilling G., Gozes I., Brosh S., Sidi Y. and Sperling O. (1995) Developmental changes in purine nucleotide metabolism in cultured rat astroglia. Int. J. Dev. Neurosci. 13, 887896.