SEARCH

SEARCH BY CITATION

References

  • Alexander S. P. H., Mathie A. and Peters J. A. (2011) Guide to receptors and channels (GRAC). Br. J. Pharmacol. 164, S1S324.
  • Berthoud H. R. (2002) Multiple neural systems controlling food intake and body weight. Neurosci. Biobehav. Rev. 26, 393428.
  • Chung C. Y. and Payne J. A. (2009) Rapid degeneration of the neuronal K-Cl cotransporter, KCC2, after trauma, in Encyclopedia of Basic Epilepsy Research (Schwartzkroin P. A., ed.), pp. 14101415. Academic Press, Oxford.
  • Deisz R. A., Lehmann T. N., Horn P., Dehnicke C. and Nitsch R. (2011) Components of neuronal chloride transport in rat and human neocortex. J. Physiol. 589, 13171347.
  • Doherty J., Gale K. and Eagles D. A. (2000) Evoked epileptiform discharges in the rat anterior piriform cortex: generation and local propagation. Brain Res. 861, 7787.
  • Ekstrand J. J., Domroese M. E., Johnson D. M., Feig S. L., Knodel S. M., Behan M. and Haberly L. B. (2001) A new subdivision of anterior piriform cortex and associated deep nucleus with novel features of interest for olfaction and epilepsy. J. Comp. Neurol. 434, 289307.
  • Fiumelli H., Cancedda L. and Poo M. M. (2005) Modulation of GABAergic transmission by activity via postsynaptic Ca2+-dependent regulation of KCC2 function. Neuron 48, 773786.
  • Fontanini A. and Bower J. M. (2006) Slow-waves in the olfactory system: an olfactory perspective on cortical rhythms. Trends Neurosci. 29, 429437.
  • Franks K. M., Russo M. J., Sosulski D. L., Mulligan A. A., Siegelbaum S. A. and Axel R. (2011) Recurrent circuitry dynamically shapes the activation of piriform cortex. Neuron 72, 4956.
  • Freeman W. J. (1957) Oscillating corticonuclear dipole in the basal forebrain of the cat. Science 126, 13431344.
  • Galeffi F., Sah R., Pond B. B., George A. and Schwartz-Bloom R. D. (2004) Changes in intracellular chloride after oxygen-glucose deprivation of the adult hippocampal slice: effect of diazepam. J. Neurosci. 24, 44784488.
  • Gietzen D. W. and Aja S. M. (2012) The brain's response to an essential amino acid-deficient diet and the circuitous route to a better meal. Mol. Neurobiol. 46, 332348.
  • Gietzen D. W. and Magrum L. J. (2001) Molecular mechanisms in the brain involved in the anorexia of branched-chain amino acid deficiency. J. Nutr. 131, 851S855S.
  • Gietzen D. W. and Rogers Q. R. (2006) Nutritional homeostasis and indispensable amino acid sensing: a new solution to an old puzzle. Trends Neurosci. 29, 9199.
  • Gietzen D. W., Dixon K. D., Truong B. G., Jones A. C., Barrett J. A. and Washburn D. S. (1996) Indispensable amino acid deficiency and increased seizure susceptibility in rats. Am. J. Physiol. 271, R18R24.
  • Gietzen D. W., Erecius L. F. and Rogers Q. R. (1998) Neurochemical changes after imbalanced diets suggest a brain circuit mediating anorectic responses to amino acid deficiency in rats. J. Nutr. 128, 771781.
  • Gietzen D. W., Ross C. M., Hao S. and Sharp J. W. (2004) Phosphorylation of eIF2alpha is involved in the signaling of indispensable amino acid deficiency in the anterior piriform cortex of the brain in rats. J. Nutr. 134, 717723.
  • Gietzen D. W., Hao S. and Anthony T. G. (2007) Mechanisms of food intake repression in indispensable amino acid deficiency. Annu. Rev. Nutr. 27, 6378.
  • Haberly L. B. (2001) Parallel-distributed processing in olfactory cortex: new insights from morphological and physiological analysis of neuronal circuitry. Chem. Senses 26, 551576.
  • Haberly L. B. and Price J. L. (1978a) Association and commissural fiber systems of the olfactory cortex of the rat. J. Comp. Neurol. 178, 711740.
  • Haberly L. B. and Price J. L. (1978b) Association and commissural fiber systems of the olfactory cortex of the rat. II. Systems originating in the olfactory peduncle. J. Comp. Neurol. 181, 781807.
  • Hao S., Sharp J. W., Ross-Inta C. M. et al. (2005) Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex. Science 307, 17761778.
  • Harris R. A., Joshi M., Jeoung N. H. and Obayashi M. (2005) Overview of the molecular and biochemical basis of branched-chain amino acid catabolism. J. Nutr. 135, 1527S1530S.
  • Hasan Z., Woolley D. and Gietzen D. (1998) Responses to indispensable amino acid deficiency and replenishment recorded in the anterior piriform cortex of the behaving rat. Nutr. Neurosci. 1, 373381.
  • Jung M. W., Larson J. and Lynch G. (1990) Role of NMDA and non-NMDA receptors in synaptic transmission in rat piriform cortex. Exp. Brain Res. 82, 451455.
  • Khawaled R., Bruening-Wright A., Adelman J. P. and Maylie J. (1999) Bicuculline block of small-conductance calcium-activated potassium channels. Pflugers Arch. 438, 314321.
  • Koehnle T. J., Russell M. C. and Gietzen D. W. (2003) Rats rapidly reject diets deficient in essential amino acids. J. Nutr. 133, 23312335.
  • Koehnle T. J., Russell M. C., Morin A. S., Erecius L. F. and Gietzen D. W. (2004) Diets deficient in indispensable amino acids rapidly decrease the concentration of the limiting amino acid in the anterior piriform cortex of rats. J. Nutr. 134, 23652371.
  • de Koning T. J., Poll-The B. T. and Jaeken J. (1999) Continuing education in neurometabolic disorders–serine deficiency disorders. Neuropediatrics 30, 14.
  • Leung P. M. and Rogers Q. R. (1971) Importance of prepyriform cortex in food-intake response of rats to amino acids. Am. J. Physiol. 221, 929935.
  • Magrum L. J., Teh P. S., Kreiter M. R., Hickman M. A. and Gietzen D. W. (2002) Transfer ribonucleic acid charging in rat brain after consumption of amino acid-imbalanced diets. Nutr. Neurosci. 5, 125130.
  • Manns I. D., Alonso A. and Jones B. E. (2003) Rhythmically discharging basal forebrain units comprise cholinergic, GABAergic, and putative glutamatergic cells. J. Neurophysiol. 89, 10571066.
  • Nabekura J., Ueno T., Okabe A., Furuta A., Iwaki T., Shimizu-Okabe C., Fukuda A. and Akaike N. (2002) Reduction of KCC2 expression and GABAA receptor-mediated excitation after in vivo axonal injury. J. Neurosci. 22, 44124417.
  • Neville K. R. and Haberly L. B. (2004) Olfactory cortex, in The Synaptic Organization of the Brain (Shepherd G. M., ed.), pp. 415454. Oxford, New York.
  • Noda K. and Chikamori K. (1976) Effect of ammonia via prepyriform cortex on regulation of food intake in the rat. Am. J. Physiol. 231, 12631266.
  • Novoa I., Zeng H., Harding H. P. and Ron D. (2001) Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J. Cell Biol. 153, 10111022.
  • Palma E., Amici M., Sobrero F. et al. (2006) Anomalous levels of Cl- transporters in the hippocampal subiculum from temporal lobe epilepsy patients make GABA excitatory. Proc. Natl Acad. Sci. U S A 103, 84658468.
  • Payne J. A., Stevenson T. J. and Donaldson L. F. (1996) Molecular characterization of a putative K-Cl cotransporter in rat brain. A neuronal-specific isoform. J. Biol. Chem. 271, 1624516252.
  • Payne J. A., Rivera C., Voipio J. and Kaila K. (2003) Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci. 26, 199206.
  • Poo C. and Isaacson J. S. (2011) A major role for intracortical circuits in the strength and tuning of odor-evoked excitation in olfactory cortex. Neuron 72, 4148.
  • Puskarjov M., Ahmad F., Kaila K. and Blaesse P. (2012) Activity-dependent cleavage of the K-Cl cotransporter KCC2 mediated by calcium-activated protease calpain. J. Neurosci. 32, 1135611364.
  • Rivera C., Voipio J., Payne J. A., Ruusuvuori E., Lahtinen H., Lamsa K., Pirvola U., Saarma M. and Kaila K. (1999) The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397, 251255.
  • Rivera C., Li H., Thomas-Crusells J. et al. (2002) BDNF-induced TrkB activation down-regulates the K+-Cl- cotransporter KCC2 and impairs neuronal Cl- extrusion. J. Cell Biol. 159, 747752.
  • Rivera C., Voipio J., Thomas-Crusells J., Li H., Emri Z., Sipila S., Payne J. A., Minichiello L., Saarma M. and Kaila K. (2004) Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2. J. Neurosci. 24, 46834691.
  • Rudell J. B., Rechs A. J., Kelman T. J., Ross-Inta C. M., Hao S. and Gietzen D. W. (2011) The anterior piriform cortex is sufficient for detecting depletion of an indispensable amino acid, showing independent cortical sensory function. J. Neurosci. 31, 15831590.
  • Sharp J. W., Magrum L. J. and Gietzen D. W. (2002) Role of MAP kinase in signaling indispensable amino acid deficiency in the brain. Brain Res. Mol. Brain Res. 105, 1118.
  • Sharp J. W., Ross C. M., Koehnle T. J. and Gietzen D. W. (2004) Phosphorylation of Ca2+/calmodulin-dependent protein kinase type II and the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor in response to a threonine-devoid diet. Neuroscience 126, 10531062.
  • Sharp J. W., Ross-Inta C. M., Hao S., Rudell J. B. and Gietzen D. W. (2006) Co-localization of phosphorylated extracellular signal-regulated protein kinases 1/2 (ERK1/2) and phosphorylated eukaryotic initiation factor 2alpha (eIF2alpha) in response to a threonine-devoid diet. J. Comp. Neurol. 494, 485494.
  • Tominaga T. and Tominaga Y. (2010) GABAA receptor-mediated modulation of neuronal activity propagation upon tetanic stimulation in rat hippocampal slices. Pflugers Arch. 460, 875889.
  • Truong B. G., Magrum L. J. and Gietzen D. W. (2002) GABA(A) and GABA(B) receptors in the anterior piriform cortex modulate feeding in rats. Brain Res. Mol. Brain Res. 924, 19.
  • Vithlani M., Terunuma M. and Moss S. J. (2011) The dynamic modulation of GABA(A) receptor trafficking and its role in regulating the plasticity of inhibitory synapses. Physiol. Rev. 91, 10091022.
  • Wek R. C., Jiang H. Y. and Anthony T. G. (2006) Coping with stress: eIF2 kinases and translational control. Biochem. Soc. Trans. 34, 711.
  • Williams J. R., Sharp J. W., Kumari V. G., Wilson M. and Payne J. A. (1999) The neuron-specific K-Cl cotransporter, KCC2. Antibody development and initial characterization of the protein. J. Biol. Chem. 274, 1265612664.
  • Zhang D., Pan Z. H., Awobuluyi M. and Lipton S. A. (2001) Structure and function of GABA(C) receptors: a comparison of native versus recombinant receptors. Trends Pharmacol. Sci. 22, 121132.