SEARCH

SEARCH BY CITATION

References

  • Bhasin M., Wu M. and Tsirka S. E. (2007) Modulation of microglial/macrophage activation by macrophage inhibitory factor (TKP) or tuftsin (TKPR) attenuates the disease course of experimental autoimmune encephalomyelitis. BMC Immunol. 8, 10.
  • Bump N., Lee J., Wleklik M., Reichler J. and Najjar V. (1986) Isolation and subunit composition of tuftsin receptor. Proc. Natl Acad. Sci. USA 83, 71877191.
  • Evans I. M., Yamaji M., Britton G., Pellet-Many C., Lockie C., Zachary I. C. and Frankel P. (2011) Neuropilin-1 signaling through p130Cas tyrosine phosphorylation is essential for growth factor-dependent migration of glioma and endothelial cells. Mol. Cell. Biol. 31, 11741185.
  • Fantin A., Schwarz Q., Davidson K., Normando E. M., Denti L. and Ruhrberg C. (2011) The cytoplasmic domain of neuropilin 1 is dispensable for angiogenesis, but promotes the spatial separation of retinal arteries and veins. Development 138, 41854191.
  • Glinka Y. and Prud'homme G. J. (2008) Neuropilin-1 is a receptor for transforming growth factor beta-1, activates its latent form, and promotes regulatory T cell activity. J. Leukoc. Biol. 84, 302310.
  • Gordon S. and Martinez F. (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32, 593604.
  • Gu C., Rodriguez E. R., Reimert D. V., Shu T., Fritzsch B., Richards L. J., Kolodkin A. L. and Ginty D. D. (2003) Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev. Cell 5, 4557.
  • Hains L. E., Loram L. C., Weiseler J. L. et al. (2010) Pain intensity and duration can be enhanced by prior challenge: initial evidence suggestive of a role of microglial priming. J. Pain 11, 10041014.
  • Hansen W. (2013) Neuropilin 1 guides regulatory T cells into VEGF-producing melanoma. Oncoimmunology 2, e23039.
  • Jarvis A., Allerston C. K., Jia H. et al. (2010) Small molecule inhibitors of the neuropilin-1 vascular endothelial growth factor A (VEGF-A) interaction. J. Med. Chem. 53, 22152226.
  • Jia H., Cheng L., Tickner M., Bagherzadeh A., Selwood D. and Zachary I. (2010) Neuropilin-1 antagonism in human carcinoma cells inhibits migration and enhances chemosensitivity. Br. J. Cancer 102, 541552.
  • Karpanen T., Heckman C. A., Keskitalo S., Jeltsch M., Ollila H., Neufeld G., Tamagnone L. and Alitalo K. (2006) Functional interaction of VEGF-C and VEGF-D with neuropilin receptors. FASEB J. 20, 14621472.
  • Kigerl K., Gensel J., Ankeny D., Alexander J., Donnelly D. and Popovich P. (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 29, 1343513444.
  • Kitsukawa T., Shimono A., Kawakami A., Kondoh H. and Fujisawa H. (1995) Overexpression of a membrane protein, neuropilin, in chimeric mice causes anomalies in the cardiovascular system, nervous system and limbs. Development 121, 43094318.
  • Klagsbrun M., Takashima S. and Mamluk R. (2002) The role of neuropilin in vascular and tumor biology. Adv. Exp. Med. Biol. 515, 3348.
  • Kohm A. P., Carpentier P. A., Anger H. A. and Miller S. D. (2002) Cutting edge: CD4+ CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J. Immunol. 169, 47124716.
  • Lohr J., Knoechel B., Wang J. J., Villarino A. V. and Abbas A. K. (2006) Role of IL-17 and regulatory T lymphocytes in a systemic autoimmune disease. J. Exp. Med. 203, 27852791.
  • Luo H., Hao Y., Tang B., Zeng D., Shi Y. and Yu P. (2012) Mouse forestomach carcinoma cells immunosuppress macrophages through transforming growth factor-beta1. Mol. Med. Rep. 5, 988992.
  • McGeachy M. J., Stephens L. A. and Anderton S. M. (2005) Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+ CD25+ regulatory cells within the central nervous system. J. Immunol. 175, 30253032.
  • Michelucci A., Heurtaux T., Grandbarbe L., Morga E. and Heuschling P. (2009) Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: effects of oligomeric and fibrillar amyloid-beta. J. Neuroimmunol. 210, 312.
  • Najjar V. A. and Nishioka K. (1970) “Tuftsin”: a natural phagocytosis stimulating peptide. Nature 228, 672673.
  • Nishioka K., Sato P. S., Constantopoulos A. and Najjar V. A. (1973) The chemical synthesis of the phagocytosis-stimulating tetrapeptide tuftsin (Thr-Lys-Pro-Arg) and its biological properties. Biochim. Biophys. Acta 310, 230237.
  • O'Leary F. M., Tajima G., Delisle A. J., Ikeda K., Dolan S. M., Hanschen M., Mannick J. A. and Lederer J. A. (2011) Injury-induced GR-1+ macrophage expansion and activation occurs independently of CD4 T-cell influence. Shock 36, 162169.
  • Prud'homme G. J. and Glinka Y. (2012) Neuropilins are multifunctional coreceptors involved in tumor initiation, growth, metastasis and immunity. Oncotarget 3, 921939.
  • Rahimi R. A. and Leof E. B. (2007) TGF-beta signaling: a tale of two responses. J. Cell. Biochem. 102, 593608.
  • Rogove A. D. and Tsirka S. E. (1998) Neurotoxic responses by microglia elicited by excitotoxic injury in the mouse hippocampus. Curr. Biol. 8, 1925.
  • Sarris M., Andersen K. G., Randow F., Mayr L. and Betz A. G. (2008) Neuropilin-1 expression on regulatory T cells enhances their interactions with dendritic cells during antigen recognition. Immunity 28, 402413.
  • Shao E. S., Lin L., Yao Y. and Bostrom K. I. (2009) Expression of vascular endothelial growth factor is coordinately regulated by the activin-like kinase receptors 1 and 5 in endothelial cells. Blood 114, 21972206.
  • Shiou S. R., Datta P. K., Dhawan P., Law B. K., Yingling J. M., Dixon D. A. and Beauchamp R. D. (2006) Smad4-dependent regulation of urokinase plasminogen activator secretion and RNA stability associated with invasiveness by autocrine and paracrine transforming growth factor-beta. J. Biol. Chem. 281, 3397133981.
  • Siao C. J. and Tsirka S. E. (2002) Tissue plasminogen activator mediates microglial activation via its finger domain through annexin II. J. Neurosci. 22, 33523358.
  • Siddiq M. M. and Tsirka S. E. (2004) Modulation of zinc toxicity by tissue plasminogen activator. Mol. Cell. Neurosci. 25, 162171.
  • Siemion I. Z. and Kluczyk A. (1999) Tuftsin: on the 30-year anniversary of Victor Najjar's discovery. Peptides 20, 645674.
  • Soker S., Takashima S., Miao H. Q., Neufeld G. and Klagsbrun M. (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735745.
  • Tian M., Neil J. R. and Schiemann W. P. (2011) Transforming growth factor-beta and the hallmarks of cancer. Cell. Signal. 23, 951962.
  • Tordjman R., Lepelletier Y., Lemarchandel V., Cambot M., Gaulard P., Hermine O. and Romeo P. H. (2002) A neuronal receptor, neuropilin-1, is essential for the initiation of the primary immune response. Nat. Immunol. 3, 477482.
  • Vander Kooi C. W., Jusino M. A., Perman B., Neau D. B., Bellamy H. D. and Leahy D. J. (2007) Structural basis for ligand and heparin binding to neuropilin B domains. Proc. Natl Acad. Sci. USA 104, 61526157.
  • Wardowska A., Dzierzbicka K., Szarynska M., Dabrowska-Szponar M., Wisniewska K., Mysliwski A. and Trzonkowski P. (2009) Analogues of muramyl dipeptide (MDP) and tuftsin limit infection and inflammation in murine model of sepsis. Vaccine 27, 369374.
  • Wei J., Duramad O., Perng O. A., Reiner S. L., Liu Y. J. and Qin F. X. (2007) Antagonistic nature of T helper 1/2 developmental programs in opposing peripheral induction of Foxp3+ regulatory T cells. Proc. Natl Acad. Sci. USA 104, 1816918174.
  • Weiss J. M., Bilate A. M., Gobert M. et al. (2012) Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J. Exp. Med. 209: 17231742, S1721.
  • Wiesmann C., Fuh G., Christinger H. W., Eigenbrot C., Wells J. A. and de Vos A. M. (1997) Crystal structure at 1.7 A resolution of VEGF in complex with domain 2 of the Flt-1 receptor. Cell 91, 695704.
  • von Wronski M. A., Raju N., Pillai R. et al. (2006) Tuftsin binds neuropilin-1 through a sequence similar to that encoded by exon 8 of vascular endothelial growth factor. J. Biol. Chem. 281, 57025710.
  • Wu M., Nissen J. C., Chen E. I. and Tsirka S. E. (2012) Tuftsin promotes an anti-inflammatory switch and attenuates symptoms in experimental autoimmune encephalomyelitis. PLoS ONE 7, e34933.
  • Yao Y. and Tsirka S. E. (2010) The C terminus of mouse monocyte chemoattractant protein 1 (MCP1) mediates MCP1 dimerization while blocking its chemotactic potency. J. Biol. Chem. 285, 3150931516.
  • Zhang Y. E. (2009) Non-Smad pathways in TGF-beta signaling. Cell Res. 19, 128139.
  • Zhou X., Spittau B. and Krieglstein K. (2012) TGFbeta signalling plays an important role in IL4-induced alternative activation of microglia. J. Neuroinflammation 9, 210.
  • Zou H. Y., Li Q., Lee J. H. et al. (2012) Sensitivity of selected human tumor models to PF-04217903, a novel selective c-Met kinase inhibitor. Mol. Cancer Ther. 11, 10361047.