SEARCH

SEARCH BY CITATION

References

  • Anand A. (1996) Role of aortic chemoreceptors in the hypertensive response to cigarette smoke. Respir. Physiol. 106, 231238.
  • Balfour D. J. K., Benwell M. E. M., Birrell C. E., Kelly J. and Al-Aloul M. (1998) Sensitization of the mesoaccumbens dopamine response to nicotine. Pharmacol. Biochem. Behav. 59, 10211030.
  • Berridge M. S., Apana S. M., Nagano K. K., Berridge C. E., Leisure G. P. and Boswell M. V. (2010) Smoking produces rapid rise of [11C]nicotine in human brain. Psychopharmacology 209, 383394.
  • Bespalov A. Y., Dravolina O. A., Sukhanov I., Zakharova E., Blokhina E., Zvartau E., Danysz W., van Heeke G. and Markou A. (2005) Matabotropic glutamate receptor (mGluR5) antagonist MPEP attenuates cue- and schedule-induced reinstatement of nicotine self-administration behavior in rats. Neuropharmacology 49(Suppl. 1, 167178.
  • Clarke P. B. (1990) Mesolimbic dopamine activation—the key to nicotine reinforcement? Ciba Found. Symp. 152, 153162.
  • Cox B. M., Goldstein A. and Nelson W. T. (1984) Nicotine self-administration in rats. Br. J. Pharmacol. 83, 4955.
  • Dani J.A., Jenson D., Broussard J. I. and De Biasi M. (2011) Neurophysiology of nicotine addiction. J. Addict. Res. Ther. S1, pii: 001.
  • Di Chiara G. (2000) Role of dopamine in the behavioral actions of nicotine related to addiction. Eur. J. Pharmacol. 393, 295314.
  • Domino E. F. (2001) Nicotine induced behavioral locomotor sensitization. Prog. Neuropsychopharmacol. Biol. Psychiatry 25, 5971.
  • Donny E. C., Caggiula A. R., Knopf S. and Brown C. (1995) Nicotine self-administration in rats. Psychopharmacology 122, 390394.
  • D'Souza M. S. and Markou A. (2011) Metabotropic glutamate receptor 5 antagonist 2-metyl-6-(phenylethynyl)pyridine (MPEP) microinfusions into the nucleus accumbens shell or ventral tegmental area attenuate the reinforcing effects of nicotine in rats. Neuropharmacology 61, 13991405.
  • Engberg G. and Hajos M. (1994) Nicotine-induced activation of locus coeruleus neurons—an analysis of peripheral versus central induction. Naunyn Schmiedeberg's Arch. Pharmacol. 349, 4433446.
  • Erhardt S., Schwieler L. and Engberg G. (2002) Excitatory and inhibitory responses of dopamine neurons in the ventral tegmental area to nicotine. Synapse 43, 227237.
  • Fu Y., Shannon G., Matta S. G., Gao W., Brower V. G. and Sharp B. M. (2000) Systemic nicotine stimulates dopamine release in nucleus accumbens: Re-evaluation of the role of N-Metyl-D-aspartate receptors in the ventral tegmental area. J. Pharmacol. Exp. Ther. 294, 458465.
  • Geisler S., Derst C., Veh R. W. and Zahm D. S. (2007) Glutamatergic afferents of the ventral tegmental area in the rat. J. Neurosci. 27, 57305743.
  • Ginzel K. H. (1975) The importance of sensory nerve endings as sites of drug action. Naunyn-Schmiedeberg's Arch. Pharmacol. 288, 2956.
  • Herman M. A., Nahir B. and Jahr C. E. (2011) Distribution of extracellular glutamate in the neuropil of hippocampus. PlosOne 6, e26501.
  • Hu Y., Mitchell K. M., Albahadily F. N., Michaelis E. K. and Wilson G. S. (1994) Direct measurement of glutamate release in the brain using a dual enzyme-based electrochemical sensor. Brain Res. 659, 117125.
  • Juan H. (1982) Nicotine nociceptors on perivascular sensory nerve endings. Pain 12, 259264.
  • Kanai Y. and Hediger M. A. (2003) The glutamate and neutral amino acid transporter family: physiological and pharmacological implications. Eur. J. Pharmacol. 479, 237247.
  • Keath J. R., Iacoviello M. P., Barrett L. E., Mansvelder H. D. and McGehee D. S. (2007) Differential modulation by nicotine of substantia nigra versus ventral tegmental area dopamine neurons. J. Neurophysiol. 98, 33883396.
  • Kelsey J. E., Beer T., Lee E. and Wagner A. (2002) Low doses of dizocipline block the development and subsequent expression f locomotor sensitization to nicotine in rats. Psychopharmacology 161, 370378.
  • Kenny P. J., Chartoff E., Roberto M., Carlezon W. A. and Markou A. (2009) NMDA receptors regulate nicotine-enhanced brain reward functions and intravenous nicotine self-administration: role of the ventral tegmental area and central nucleus of the amygdala. Neuropsychopharmacology 34, 266381.
  • Kiyatkin E. A. and Rebec G. V. (1998) Heterogeneity of ventral tegmental area neurons: single-unit recording and iontophoresis in awake, unrestrained rats. Neuroscience 85, 12851309.
  • Kiyatkin E. A. and Rebec G. V. (1999) Modulation of striatal neuronal activity by glutamate and GABA: iontophoresis in awake, unrestrained rats. Brain Res. 822, 88106.
  • Kiyatkin E. A., Wakabayashi K. T. and Lenoir M. (2013) Physiological fluctuations in brain temperatures as a factor affecting electrochemical evaluations of extracellular glutamate and glucose in behavioral experiments. ACS Chem. Neurosci. 4, 652665.
  • Lenoir M. and Kiyatkin E. A. (2011) Critical role of peripheral actions of intravenous nicotine in mediating its central effects. Neuropsychopharmacology 36, 21252138.
  • Lenoir M., Tang J. S., Woods A. S. and Kiyatkin E. A. (2013) Rapid sensitization of physiological, neuronal, and locomotor effects of nicotine: Critical role of peripheral drug actions. J. Neurosci. 33, 99379949.
  • Liu L. and Simon S. A. (1996) Capsaicin and nicotine both activate a subset of rat trigeminal ganglion neurons. Am. J. Physiol. 270, C1807C1814.
  • Liu L., Zhao-Shea R., McIntosh J. M., Gardner P. D. and Tapper A. R. (2012) Nicotine persistently activates ventral tegmental area dopaminergic neurons via nicotinic acetylcholine receptors containing a4 and a6 subunits. Mol. Pharmacol. 81, 541548.
  • Mao D. and McGehee D. S. (2010) Nicotine and behavioral sensitization. J. Mol. Neurosci. 40, 154163.
  • Matsubayashi H., Amano T., Seki T., Sasa M. and Sakai N. (2003) Electrophysiological characterization of nicotine-induced excitation of dopaminergic neurons in the rat substantia nigra. J. Pharmacol. Sci. 93, 143148.
  • Moussawi K., Reigel A., Nair S. and Kalivas P. W. (2011) Extracellular glutamate: functional compartments operate in different concentration ranges. Front. Syst. Neurosci. 5, 94. doi:10.3389/fnsys.2011.00094.
  • Naylor E., Aillon D. V., Gabbert S., Harmon H., Johnson D. A., Wilson G. S. and Petillo P. A. (2011) Simultaneous real-time measurement of EEG/EMG and L-glutamate in mice: a biosensor study of neuronal activity during sleep. J. Electroanal. Chem, 656, 106113.
  • Nichols D. G. and Attwell D. (1990) The release and uptake of excitatory amino acids. Trends Pharmacol. Sci. 11, 462468.
  • Paxinos J. and Watson C. (1998) The Rat Brain in Stereotaxic Coordinates. Academic Press, Sydney.
  • Rebec G. V. (1998) Dopamine, glutamate, and behavioral correlates of striatal neuronal activity. Adv. Pharmacol. 42, 737740.
  • Rose J. E. and Corrigall W. A. (1997) Nicotine self-administration in animals and humans: similarities and differences. Psychopharmacology 130, 2840.
  • Rose J. E., Mukhin A. G., Lokitz S. J., Turkington T. G., Herskovic J., Behm F. M., Garg S. and Garg P. K. (2010) Kinetics of brain nicotine accumulation in dependent and nondependent smokers assessed with PET and cigarette containing 11C-nicotine. PNAS 107, 51905195.
  • Sastry B. V., Chance M. B., Singh G., Horn J. L. and Janson V. E. (1995) Distribution and retention of nicotine and its metabolite, cotinine, in the rat as a function of time. Pharmacology 50, 128136.
  • Stalhanske T. (1970) Effect of increased liver metabolism of nicotine on its uptake, elimination and toxicity. Acta Physiol. Scand. 80, 222234.
  • Svensson T. H., Mathe J. M., Nomikos G. G. and Shilstrom B. (1998) Role of excitatory amino acids in the ventral tegmental area for the central actions of non-competitive NMDA-receptor antagonists and nicotine. Amino Acids 14, 5156.
  • Sziraki I., Sershen H., Hashim A. and Lajtha A. (2002) Receptors in the ventral tegmental area mediating nicotine-induced dopamine release in the nucleus accumbens. Neurochem. Res. 27, 253261.
  • Tang J. S. and Kiyatkin E. A. (2011) Fluctuations in central and peripheral temperatures induced by intravenous nicotine: Central and peripheral contributions. Brain Res. 1383, 141153.
  • Turner D. M. (1969) The metabolism of [14C]nicotine in the cat. Biochem. J. 115, 889896.
  • Vezina P., McGehee D. S. and Green W. N. (2007) Exposure to nicotine and sensitization of nicotine-induced behaviors. Prog. Neuropsychopharmacol. Biol. Psychiatry 31, 16251638.
  • Vizi E. A., Fekete A., Karoly R. and Mike A. (2010) Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment. Br. J. Pharmacol. 160, 785809.
  • Wakabayashi K. T. and Kiyatkin E. A. (2012) Rapid changes in extracellular glutamate induced by natural arousing stimuli and intravenous cocaine in the nucleus accumbens shell and core. J. Neurophysiol. 108, 285299.
  • Wise R. A. and Bozarth M. A. (1987) A psychomotor stimulant theory of addiction. Psychol. Rev. 94, 469492.
  • Zito K. and Scheuss V. (2009) NMDA receptor function and physiological modulation, in Encyclopedia of Neuroscience, vol. 6, (Squire L. R., ed.), pp. 11571164. Academic Press, Oxford.